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1. Introduction

Here is an example of a standard look and say sequence:

111→ 31→ 1311→ 111321→ 31131211→ 132113111221→ · · · (1.1)

Roughly speaking, the rule for generating the sequence is “say what you see”. More
precisely, the sequence above starts with the seed 111. When we look at 111 we see
three 1’s and thus the next term is 31. Looking at 31 we see one 3 followed by one
1, so the next term is 1311. Continuing, from 1311 we see one 1, one 3, and then
two 1’s, which gives the next term 111321. Eventually the terms in the sequence
above appear to be growing, which brings us to the following:

Problem 1. Determine the growth rate of a given look and say sequence.

The solution to Problem 1 for the sequence (1.1)1 is given by John Conway in
[Con]. In order to describe Conway’s solution let us consider the number of digits
(i.e. the length) of each term in (1.1):

3, 2, 4, 6, 8, 12, . . .

According to Conway, the ratios of those lengths approach what is now called
Conway’s constant :

1.303577269 . . .

In other words, on average each term in (1.1) is approximately 30% longer than the
previous term. Conway’s constant is remarkable in that it is the largest real root
of the following irreducible polynomial:

λ71 − λ69 − 2λ68 − λ67 + 2λ66 + 2λ65 + λ64 − λ63 − λ62 − λ61 − λ60 − λ59 + 2λ58

+ 5λ57 + 3λ56 − 2λ55 − 10λ54 − 3λ53 − 2λ52 + 6λ51 + 6λ50 + λ49 + 9λ48 − 3λ47

− 7λ46 − 8λ45 − 8λ44 + 10λ43 + 6λ42 + 8λ41 − 5λ40 − 12λ39 + 7λ38 − 7λ37 + 7λ36

+ λ35 − 3λ34 + 10λ33 + λ32 − 6λ31 − 2λ30 − 10λ29 − 3λ28 + 2λ27 + 9λ26 − 3λ25

+ 14λ24 − 8λ23 − 7λ21 + 9λ20 + 3λ19 − 4λ18 − 10λ17 − 7λ16 + 12λ15 + 7λ14 + 2λ13

− 12λ12 − 4λ11 − 2λ10 + 5λ9 + λ7 − 7λ6 + 7λ5 − 4λ4 + 12λ3 − 6λ2 + 3λ− 6

The surprisingly high degree of the polynomial above indicates that the underlying
mathematical structure of these look and say sequences may be more complicated
than the simple “say what you see” rule might initially lead you to believe. Indeed,
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Conway discovered a beautiful structure of these look and say sequences that is
ultimately governed by a linear transformation of a 92-dimensional vector space!

The purpose of this article is definitely not to attempt to improve upon Conway’s
delightful explanation of his methods and results in [Con]. Instead, we hope to ex-
plain how Conway’s methods and results can be generalized to other (nonstandard)
look and say sequences. Many variations of look and say sequences have already
been explored (see e.g. [EBGSN+2, EBGSN+1], [OM], [Mor], [SS]). We will be
interested in look and say sequences that arise from various (nonstandard) number
systems. For example, one could use Roman numerals2 to generate the following
look and say sequence:

I→ II→ III→ IIII→ IVI→ IIIVII→ IIIIIVIII→ VIIVIIII→ · · ·

1.1. Outline. In Section 2 we will completely describe the structure of all look
and say sequences for a particular nonstandard number system we call the negafib-
nary number system, which is related to Fibonacci numbers. The structure in the
negafibnary case is much simpler than the standard case worked out by Conway.
Along the way we will compare the negafibnary results to the analogous results
in [Con]. Moreover, we will provide exercises so that the reader can work out the
details for a third case coming from the so-called negabinary number system.

2. Negafibnary look and say sequences

2.1. The negafibnary number system. In this subsection we will explain how
to create a binary number system from Fibonacci numbers using something called
a Zeckendorf representation. First, recall the definition of the Fibonacci sequence:

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1.

Although Fibonacci numbers are usually considered with nonnegative index, we
always have Fn−1 = Fn+1 − Fn which allows use to extend Fibonacci numbers to
negative indexes. Indeed, F−1 = F1−F0 = 1−0 = 1, F−2 = F0−F−1 = 0−1 = −1,
and so on. Here is the extended Fibonacci sequence:

. . . , 34,−21, 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Note that F−k = (−1)k+1Fk for all k.
Zeckendorf’s Theorem states that every positive integer can be written uniquely

as a sum of nonadjacent Fibonacci numbers (see [Zec]). For our purposes, we will
use the following negative index analog of Zeckendorf’s Theorem due to Bunder:

Theorem 2.1. [Bun] Every nonzero integer can be written uniquely in the form
k∑
j=1

bjF−j where each bj ∈ {0, 1}, bk = 1, and bj+1 = 0 whenever bj = 1.

If we interpret the bj ’s in the theorem above as bits we obtain a nonstandard
binary representation of the integers. More precisely, we will write the binary string

bk · · · b2b1 for the integer n =
k∑
j=1

bjF−j . We will call bk · · · b2b1 the negafibnary

representation of n. For example, 101 is the negafibnary representation of the
integer F−3 + 0 · F−2 + F−1 = 2 + 0 + 1 = 3. Similarly, 10010 is the negafibnary

2Conway once said that Roman numeral look and say sequences correspond to a degree 20 poly-
nomial (see [Har]). I would love for someone to show me how to prove this.
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representation of F−5 + F−2 = 5 − 1 = 4. Using this terminology, Theorem 2.1
says that every integer has a unique negafibnary representation (with no adjacent
1’s). The following table shows the negafibnary representation for the first few
nonnegative integers:

0 1 2 3 4 5 6 7 8 9
0 1 100 101 10010 10000 10001 10100 10101 1001010

2.2. A negafibnary look and say sequence. Using negafibnary representations
gives us a new way to say what we see when generating a look and say sequences.
For example, if we look at 1111 then we see four 1’s. Since the negafibnary repre-
sentation of four is 10010 we would say 100101. As in the standard case, repeatedly
applying this say-what-you-see operation will generate a look and say sequence.

Consider the look and say sequence starting with the seed 0. First, we see one 0
so the next term is 10. From 10 we see one 1 and one 0 so the next term is 1110.
Now, looking at 1110 we see three 1’s followed by one 0; since the negafibnary
representation of three is 101, the next term will be 101110. Continuing on in this
manner gives us the following look and say sequence:

0→ 10→ 1110→ 101110→ 1110101110→ 1011101110101110→ · · · (2.1)

You might be able to spot a pattern by inspecting the terms above. Following
Conway, in order to fully understand the structure of the sequence we should “split”
it into smaller sequences. We explain how to do so in §2.4. First, we introduce
another example of a nonstandard look and say sequence.

2.3. The negabinary case. Suppose b0, b1, . . . , bk ∈ {0, 1} are bits with bk = 1.

We call bk · · · b1b0 the negabinary representation of the integer n =
k∑
j=0

bj(−2)j .

For example, 6 = (−2)4 + (−2)3 + (−2)1 so the negabinary representation of 6 is
11010. It turns out that every integer has a unique negabinary representation. As
we develop the theory of negafibnary look and say sequences, we will explore the
analogous structure of negabinary look and say sequences in exercises.

Exercise 2.2. Find the negabinary representation for each of 1, 2, 3, . . . , 10.

Exercise 2.3. Write the first several terms of the negabinary look and say sequence
starting with seed 0.

2.4. Splitting into elements. Consider the following negafibnary look and say
sequences with seeds x = 0, y = 10, and z = 010:

x = 0 → 10 → 1110 → 101110 → · · ·
y = 10 → 1110 → 101110 → 1110101110 → · · ·
z = 010 → 101110 → 1110101110 → 1011101110101110 → · · ·

Notice that each term of the look and say sequence with seed z can be obtained by
concatenating the corresponding terms from seed x to the left of the terms from
seed y. When this happens we say that z splits and write z = x.y. Note that
the splitting allows us to completely determine the sequence with seed z from the
sequences with smaller seeds x and y. This reduction is the key to Conway’s method
for analyzing look and say sequences.
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When reducing look and say sequences via splitting, one must be careful that
the splitting occurs for all of the terms in a look and say sequence. For example,
consider the standard look and say sequences with seeds x = 3, y = 2, and z = 32:

x = 3 → 13 → 1113 → 3113 → 132113 → · · ·
y = 2 → 12 → 1112 → 3112 → 132113 → · · ·
z = 32 → 1312 → 11131112 → 31133112 → 1321232112 → · · ·

While the first few terms of sequence from seed z is obtained by concatenating
those from x and y, eventually we find a term from z, namely 1321232112, which
differs from the concatenation of the corresponding terms from x and y, namely
132113132113. Thus, in the standard case 32 6= 3.2.

Problem 2. Determine precisely when and how look and say sequences split.

The solution to Problem 2 for standard look and say sequences is Conway’s
Splitting Theorem (see [Con]). Before providing the solution in the negafibnary
case, it will be convenient to introduce a bit of notation. Let us write xy for the
concatenation of x and y (i.e. x placed to the left of y). For example, if x = 10
and y = 11100 we have xy = 1011100. Note that we are straying from the usual
convention in that xy does not refer to multiplication. Now we are in a good
position to solve Problem 2 in the negafibnary case:

Theorem 2.4. (Negafibnary Splitting Theorem) Given any binary string z, the
corresponding negafibnary look and say sequence splits as z = x.y whenever z = xy,
the rightmost bit in x is a 0, and the leftmost bit in y is a 1.

Proof. Write x = x0 → x1 → x2 → · · · , y = y0 → y1 → y2 → · · · , and finally
z = z0 → z1 → z2 → · · · for the relevant look and say sequences. We use induction
to show that for every k ≥ 0 we have (i) zk = xkyk, (ii) the rightmost bit of xk is
a 0, and (iii) the leftmost bit of yk is a 1. The base case is given by the hypothesis
of the theorem. For the inductive step, assume (i)–(iii) hold for some k ≥ 0. Now,
since the rightmost bit of xk is 0, the last thing you see in xk will be some run of 0’s,
hence xk+1 will also end with a 0. Next, since the start of yk+1 is the negafibnary
representation of the number of 1’s on the very left of yk, and every negafibnary
representation of a positive integer starts with a 1, it follows that yk+1 starts with
a 1. Finally, since xk ends with a 0 and yk starts with a 1, there is no interaction
between xk and yk when performing the say-what-you-see operation on zk = xkyk.
It follows that zk+1 = xk+1yk+1. �

Exercise 2.5. Does Theorem 2.4 still hold if we replace negafibnary with negabi-
nary? Why or why not?

Using Theorem 2.4 we can completely split any binary string in the negafibnary
case. For example, 111011000 = 1110.11000. Some binary strings can be split more
than once: 101101001100 = 10.110.100.1100. More generally, any binary string
splits into strings consisting of some 1’s followed by some 0’s. To state this a bit
more precisely, let us write xn for the concatenation of the string x with itself n
times. Then every binary string in the negafibnary case splits into strings of the
form

1m0n = 1 · · · 1︸ ︷︷ ︸
m

0 · · · 0︸ ︷︷ ︸
n

(2.2)

where m and n are nonnegative integers.
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Strings that cannot be split are called elements. An arbitrary string is a com-
pound of the elements it splits into. We have shown that the elements in the
negafibnary case are precisely the binary strings (2.2). This terminology goes back
to Conway’s work in [Con]. Conway’s splitting theorem for the standard case is
more complicated than Theorem 2.4, and thus the elements in the standard case
do not possess a simple form like (2.2). However, Conway found 92 common ele-
ments that appear in almost every look and say sequence; he named these common
elements after the 92 naturally-occurring elements hydrogen, helium,. . ., uranium.

Since every string splits into elements, and the say-what-you-see operation on
the elements do not interact with one another, the structure of any look and say
sequence is completely determined by the elements that appear in the sequence.
For example, consider the sequence (2.1). Every term after the initial seed is a
compound of the two elements 10 and 1110. Thus we will be able to solve Problem
1 for sequence (2.1) by analyzing the say-what-you-see operation on just those two
elements.

We say an element appears frequently in a look and say sequence if that element
appears in infinitely many of the terms. For example, the only elements that appear
frequently in (2.1) are 10 and 1110. Determining the frequent elements in a look
and say sequence is a crucial step towards solving Problem 1.

Problem 3. Given a look and say sequence equipped with a splitting theorem,
determine all the elements that appear frequently.

Exercise 2.6. Find all the elements that appear frequently in the negabinary look
and say sequence from Exercise 2.3.

2.5. Decay and decay matrices. Continuing with the chemical terminology, if
the say-what-you-see operation takes x → y then we say the compound x decays
into y. For example, in the negafibnary case we have 0 → 10, so 0 decays into 10.
Now let

e1 = 10 and e2 = 1110. (2.3)

Then e1 = 10 → 1110 = e2 and e2 = 1110 → 101110 = e1e2. Thus e1 decays into
e2, and e2 decays into e1e2.

Exercise 2.7. Determine the negabinary decay of each element from Exercise 2.6.

Suppose e1, . . . , ek is a collection of elements such that each ej decays into a
compound of some of the ei’s. To these elements we associate a k-dimensional
vector space of column vectors called the compound space. Given a compound of
these elements, the corresponding compound vector is the column vector whose ith
entry is the number of times ei appears in the compound. For example, consider
the last string written in the sequence (2.1). Keeping with (2.3), that string is a

compound of 2 e1’s and 3 e2’s, so the corresponding compound vector is

(
2
3

)
.

Returning to the general setup with k elements, the decay matrix is the k × k
matrix whose i, j-entry is the number of times ei occurs in the decay of ej . In other
words, the jth column is the compound vector corresponding to the decay of ej .
For example, with (2.3) in the negafibnary case the decay matrix is(

0 1
1 1

)
. (2.4)
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Indeed, the first column is

(
0
1

)
since e1 decays into zero e1’s and one e2; the second

column is

(
1
1

)
because e2 decays into one e1 and one e2.

Exercise 2.8. Use your answer to Exercise 2.7 to find a decay matrix for the
negabinary look and say sequence from Exercise 2.3. To get started you will need
to fix an order on the elements. Your matrix will depend on the order you choose.

The decay matrix is so-named because multiplying a compound vector by the
decay matrix corresponds to decaying the compound via the say-what-you-see oper-
ation. For example, we have already seen 1110101110→ 1011101110101110 in the
negafibnary case (see (2.1)). The first of these compounds corresponds the vector(

1
2

)
. Multiplying by the decay matrix we get

(
0 1
1 1

)(
1
2

)
=

(
2
3

)
, which we’ve

already seen is the compound vector for the decay compound. Similarly, one can
check that every step in the following sequence is obtained via left multiplication
by the decay matrix (2.4):(

1
0

)
7→
(

0
1

)
7→
(

1
1

)
7→
(

1
2

)
7→
(

2
3

)
7→
(

3
5

)
7→ · · · (2.5)

Note that the first 5 vectors in (2.5) are the compound vectors for the last 5 terms
of (2.1). The first term of (2.1), 0, does not correspond to a compound vector in
this compound space since 0 is not a compound of e1 = 10 and e2 = 1110. The last
vector in (2.5) tells us that the next (unwritten) term in (2.1) will be a compound
of 3 e1’s and 5 e2’s. Notice that all the coordinates in (2.5) are Fibonacci numbers!

Exercise 2.9. Find the sequence of compound vectors for the negabinary look and
say sequence from Exercise 2.3. In other words, (2.1) is to (2.5) as your answer
to Exercise 2.3 is to what? The coordinates in these compound vectors are the
so-called Padovan numbers.

Although the decay matrix encodes a significant amount of decay information,
one cannot completely recover a look and say sequence from the corresponding
decay matrix and compound vectors. This is because the compound vector of a
given compound does not encode the order in which the elements appear in a given
compound. For example, the two different compounds e1e2 and e2e1 have the same

compound vector

(
1
1

)
. However, if we are concerned with a problem that does not

depend on the order of the elements, like Problem 1, then we can often find the
solution within the structure of the decay matrix.

2.6. Solving Problem 1 with an eigenvalue. The key to solving Problem 1 is
to find eigenvalues of the decay matrix D. In order to find eigenvalues we first
find the characteristic polynomial3 det(λI − D). For example, the characteristic
polynomial of the decay matrix (2.4) is

det

(
λ −1
−1 λ− 1

)
= λ2 − λ− 1. (2.6)

3Some prefer to define the characteristic polynomial of D as det(D−λI). I prefer det(λI−D) since
it will always be a monic polynomial (i.e. the leading coefficient will be 1). These two conventions
at most differ by a multiple of −1. In particular, they always have the same roots

.
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The eigenvalues of a matrix are the roots of its characteristic polynomial. The roots

of (2.6) are λ = 1±
√
5

2 . In particular, the maximal real eigenvalue is the celebrated
golden ratio

ϕ =
1 +
√

5

2
= 1.61803 . . . (2.7)

Exercise 2.10. Find the characteristic polynomial for the decay matrix from Ex-
ercise 2.8. Use technology to determine the maximal real root of the characteristic
polynomial. This number is the so-called plastic ratio often denoted ρ.

We will show that the golden ratio is negafibnary analog of Conway’s constant. In
particular, the ratio of the lengths of successive terms of (2.1) approach the golden
ratio, and thus solves Problem 1 for that look and say sequence. This procedure
works more generally:

Theorem 2.11. Given a look and say sequence whose terms are eventually com-
pounds consisting of elements e1, . . . , ek, the ratios of the lengths of the terms ap-
proach the maximal real eigenvalue4 of the corresponding k × k decay matrix.

In the standard case, Conway’s 92 elements give rise to a 92× 92 decay matrix.
Conway’s constant (1) is the maximal real root of this decay matrix. The irreducible
degree 71 polynomial given at the beginning of the introduction is a factor of the
degree 92 characteristic polynomial.

Instead of proving Theorem 2.11 in general, we will verify only the negafibnary
case for the look and say sequence (2.1). However, with just a bit more linear algebra
the argument given below can be generalized to give a full proof of Theorem 2.11.

Proof of Theorem 2.11 for (2.1). Let D denote the decay matrix (2.4) and write

λ1 = 1+
√
5

2 and λ2 = 1−
√
5

2 for the eigenvalues of D. One can show that v1 =

(
1
λ1

)
and v2 =

(
1
λ2

)
are respective eigenvectors of D. In other words, Dvi = λivi for

both i = 1, 2. Now, set u0 =

(
1
0

)
and write un = Dnu0 for each n > 0. In other

words, the sequence u0 7→ u1 7→ u2 7→ · · · is precisely (2.5). Since v1 and v2 span all
of R2 we can find α1, α2 ∈ R such that u0 = α1v1 +α2v2. The interested reader can
find the exact values of α1 and α2. For our purposes, it suffices to know that such
scalars exist and α1 6= 0 (because u0 is not a scalar multiple of v2). The following
computation is the key to the proof:

1

λn1
un =

1

λn1
Dnu0 (definition of un) (2.8)

=
1

λn1
Dn(α1v1 + α2v2) (definition of α1 and α2) (2.9)

=
1

λn1
(α1λ

n
1 v1 + α2λ

n
2 v2) (definition of eigenvector) (2.10)

= α1v1 + α2

(
λ2
λ1

)n
v2 (2.11)

4The fact that such an eigenvalue will always exist follows from the Perron-Frobenius Theorem.
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→ α1v1 as n→∞ (since |λ1| > |λ2|) (2.12)

To connect the computation above to the statement of the theorem we let ` denote
the vector whose coordinates are the lengths of the elements e1 = 10 and e2 = 1110.

More precisely, we have ` =

(
2
4

)
. Then the length of any compound corresponding

to compound vector u is given by the dot product u · `. Thus, the ratio of lengths

of successive terms of (2.1) is given by
un+1 · `
un · `

. We can use the computation above

to determine the limit of this ratio:

un+1 · `
un · `

= λ1

 1
λn+1
1

un+1 · `
1
λn
1
un · `

→ λ1

(
α1v1 · `
α1v1 · `

)
= λ1 as n→∞.

2

Exercise 2.12. Mimic the argument above to prove that the ratios of the lengths
of terms in the negabinary look and say sequence from Exercise 2.3 approach the
plastic ratio from Exercise 2.10.

2.7. Abundances. Since Problem 1 can be solved using the largest real eigenvalue
of a decay matrix, it is natural to ask what the corresponding eigenvector tells us
about the look and say sequence. We will see that eigenvectors can be used to solve
the following problems:

Problem 4. Determine the limiting relative abundance of each element in a look
and say sequence.

Problem 5. Determine the limiting relative abundance of each digit in a look and
say sequence.

To make Problem 4 more precise we introduce some notation for abundances.
Given a column vector u whose coordinates sum to s 6= 0, we write ab(u) = 1

su for
the abundance vector of u. For example, consider the last term written in the look
and say sequence (2.1), namely the compound e1e2e2e1e2. The corresponding com-

pound vector is u =

(
2
3

)
so the abundance vector is ab(u) = 1

2+3u =

(
0.4
0.6

)
. Note

that the coordinates of ab(u) are exactly the relative abundances of the elements
in the compound: 40% of the elements in the compound are e1 and 60% are e2.
Thus, to solve Problem 4 is to find the limit of the abundance vectors for a given
look and say sequence. The following theorem explains how to find such a limit.

Theorem 2.13. Given a look and say sequence whose terms are eventually com-
pounds consisting of elements e1, . . . , ek, the corresponding sequence of abundance
vectors approach ab(v) where v is any eigenvector of the decay matrix with maximal
real eigenvalue.

Before proving Theorem 2.13 we will see how it can be used to give explicit
solutions to both Problem 4 and Problem 5 in the negafibnary case.

Consider the negafibnary look and say sequence (2.1). Taking the abundance of
each vector in (2.5) gives us the sequence of abundance vectors:(

1
0

)
7→
(

0
1

)
7→
(

0.5
0.5

)
7→
(

0.333 . . .
0.666 . . .

)
7→
(

0.4
0.6

)
7→
(

0.375
0.625

)
7→ · · · (2.13)
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Now, we have already seen that the maximal eigenvalue of the decay matrix (2.4) is

the golden ratio λ1 = 1+
√
5

2 and a corresponding eigenvector is v1 =

(
1
λ1

)
. Using

the notation ϕ = 1+
√
5

2 we have

ab(v1) =
1

1 + ϕ

(
1
ϕ

)
=

1

ϕ2

(
1
ϕ

)
=

(
ϕ−2

ϕ−1

)
=

(
0.381 . . .
0.618 . . .

)
. (2.14)

According to Theorem 2.13 the limit of the sequence (2.13) is (2.14). In particular,
abundances of elements e1 = 10 and e2 = 1110 in (2.1) are approaching ϕ−2 ≈ 0.38
and ϕ−1 ≈ 0.62 respectively. Hence, the ratio of the number of e2’s to e1’s occurring
in (2.1) is approaching the golden ratio. This solves Problem 4 in the negafibnary
case for (2.1).

Exercise 2.14. Solve Problem 4 in the negabinary case for the look and say se-
quence from Exercise 2.3. In particular, explain how the abundances of the elements
are related by the plastic ratio ρ (see Exercise 2.10).

In the standard case, the abundances of Conway’s 92 common elements corre-
spond to an eigenvector of a 92 × 92 decay matrix. All 92 abundances are listed
in The Periodic Table found in [Con]. Conway was not concerned with Problem
5, but solving that problem is easy once we have a solution to Problem 4. Indeed,
the abundance of each digit in a look and say sequence can be determined from the
abundance of each element in the look and say sequence together with the abun-
dance of each digit in each element. More precisely, if v is the limiting abundance
vector for elements (the solution to Problem 4) and A is the matrix whose jth
column lists the abundance of each digit in the jth element, then the product Av
gives the limiting abundance of each digit in the look in say sequence.

For example, consider the negafibnary look and say sequence (2.1). Since e1 = 10
we see the abundances of 0 and 1 in e1 are both 0.5. Similarly, the abundances of
0 and 1 in e2 = 1110 are 0.25 and 0.75 respectively. Packaging these abundances
into a matrix A and multiplying by the vector v given in (2.14) gives(

0.5 0.25
0.5 0.75

)(
ϕ−2

ϕ−1

)
=

(
0.5ϕ−2 + 0.25ϕ−1

0.5ϕ−2 + 0.75ϕ−1

)
=

(
0.25 + 0.25ϕ−2

0.5 + 0.25ϕ−1

)
≈
(

0.345
0.655

)
.

This gives us a solution to Problem 5 for the negafibnary look and say sequence
(2.1): eventually there are approximately 34.5% 0’s and 65.5% 1’s in each term.

Exercise 2.15. Solve Problem 5 for the negabinary look and say sequence from
Exercise 2.7.

As promised, we conclude this section with a proof of Theorem 2.13. The proof
below relies on our proof of Theorem 2.11, which was only given for the negafibnary
(2.1). The motivated reader is encouraged to generalize the following proof to the
general case.

Proof of Theorem 2.13 for (2.1). Let λi, vi, αi, and un be as in the proof of Theorem
2.11. To prove the theorem at hand, we will show ab(un) → ab(v1) as n → ∞.
Note that the sum of the coordinates of any vector u is given by the dot product
u · 1 where 1 is the column vector with all 1’s as coordinates. Hence ab(u) = 1

u·1u
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for all u. Thus, using the result of computation (2.8)–(2.12) we have

ab(un) =
1

un · 1
un =

1

λ−n1 un · 1
λ−n1 un →

1

α1v1 · 1
α1v1 =

1

v1 · 1
v1 = ab(v1)

as n→∞, which completes the proof. 2

2.8. Completing the chemistry. The elements that appear frequently (i.e. in-
finitely many times) in a look and say sequence depend on the seed. For example,
in the negafibnary case we know the look and say sequence (2.1) with seed 0 has
two frequently occurring elements: e1 = 10 and e2 = 1110. On the other hand, if
the seed is instead 1 we get the following look and say sequence:

1→ 11→ 1001→ 11100011→ 101110101001→ 1110101110111011100011→ · · ·

In addition to the elements e1 and e2, the elements 1, 11, 100, and 111000 also
appear frequently in the sequence above. There are still other elements that appear
frequently in other negafibnary look and say sequences, like 110 in the following:

110→ 100110→ 111000100110→ 10111010111000100110→ · · · (2.15)

In fact, there exist negafibnary look and say sequences with nine different frequent
elements5. We call an element persistent if it has the property that whenever it
appears in a look and say sequence, it appears frequently in that sequence. This
motivates the following:

Problem 6. For a given number system, describe all the persistent elements.

Exercise 2.16. Find the persistent elements in the negabinary look and say se-
quence with seed 1.

Exercise 2.17. Find a negabinary look and say sequence which has a persistent
element that is not among your answers for Exercises 2.6 and 2.16.

A complete solution to Problem 6 comes in two parts: (1) a list of persistent
elements along with their decay and abundances; and (2) a proof that every seed
eventually decays into compounds of those elements. The solution in the standard
case is provided by Conway in [Con] where he provides (1) a periodic table of his
92 common elements and (2) a Cosmological Theorem stating that every standard
look and say sequence eventually consists of compounds of his 92 elements (along
with a couple families of so-called transuranic elements).

For the negafibnary case we will show that nine elements suffice. These elements
are denoted e1, e2, . . . , e9 according to the following:

5For example, use the seed 15051101.
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The Negafibnary Periodic Table
n en Decay Abundance
1 10 e2 ϕ−2 = 0.381 . . .
2 1110 e1e2 ϕ−1 = 0.618 . . .
3 11100000 e1e3 0
4 111000 e1e2e1 0
5 100 e4 0
6 110 e5e6 0
7 1100000 e5e7 0
8 11 e5e9 0
9 1 e8 0

(2.16)

Note that the decay of each of the nine elements is listed in the table above. For
example, the n = 6 row states that e6 = 110 decays into e5e6 = 100110, which
agrees with the start of (2.15).

Exercise 2.18. Verify the decay column of the periodic table (2.16) by performing
the negafibnary say-what-you-see operation on each of the nine elements in the en
column.

Following §2.5 we can encode the decay column of the periodic table into a 9× 9
decay matrix: 

0 1 1 2 0 0 0 0 0
1 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0


(2.17)

Notice that the smaller decay matrix (2.4) is found in the upper left corner of the
larger matrix above. The characteristic polynomial of the 9× 9 matrix is

λ9 − 4λ8 + 4λ7 + 3λ6 − 7λ5 + 2λ4 + 2λ3 − λ2 = λ2 (λ− 1)
4

(λ+ 1)
(
λ2 − λ− 1

)
.

The roots of the polynomial above, i.e. the eigenvalues of (2.17), are 0,±1, 1±
√
5

2 . In

particular, the maximal real eigenvalue is ϕ = 1+
√
5

2 . It follows from Theorem 2.11
that any negafibnary look and say sequence whose frequent elements are those in
the periodic table (2.16) grows at rate ϕ. Moreover, by Theorem 2.13 the relative
abundance of the nine elements in such a look and say sequence will approach the
abundance vector of any eigenvector with eigenvalue ϕ. This is exactly how the
abundance column of the periodic table (2.16) is obtained.

Exercise 2.19. Create a negabinary periodic table with the following ten elements:

110, 10, 1110, 111110, 100, 111100, 11100, 11111100, 11, 1.

Use appropriate technology to determine abundances.
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Elements that appear in a look and say sequence with nonzero relative abundance
zero will be called abundant, elements with relative abundance 0 will be called rare.
According to the periodic table (2.16), if the terms of a negafibnary look and say
sequence are eventually compounds of e1, . . . , e9 and the two elements e1, e2 appear
somewhere, then all other elements will be rare in that look and say sequence. In
particular, such sequences will always grow at rate ϕ. However, negafibnary look
and say sequence in which e1 and e2 do not appear would have different abundant
elements, and thus might have different growth rates. It turns out that no such look
and say sequences exist in the negafibnary case. To see this for sequences whose
terms are compounds of e1, . . . , e9 consider the following decay graph for these nine
elements:

e1 e2e3

e4

e5e6

e7

e8 e9

(2.18)

In the graph above each arrow from ej to ei indicates an occurrence of ei in the
decay of ej . For example, since e4 decays into e1e2e1 we have one arrow from e4 to
e2 and two arrows from e4 to e1. In other words, the number of arrows from ej to
ei in the decay graph is equal to the i, j-entry in the decay matrix (2.17).

Now, looking at the decay graph we see there is a path from each of the nine
elements e1, . . . , e9 to both e1 and e2. It follows that e1 and e2 occur in any
negafibnary look and say sequence whose terms are compounds of e1, . . . , e9. Hence,
all such look and say sequences grow at rate ϕ.

Exercise 2.20. Draw the decay graph for the ten elements listed in Exercise 2.19
in the negabinary case. What are the possible growth rates of the negabinary look
and say sequences whose terms are eventually compounds of those ten elements?

2.9. Cosmological Theorems. In this section we will complete our solution to
Problem 6 by providing a Cosmological Theorem for negafibnary look and say se-
quences (see Theorem 2.24). As we have previously mentioned, Conway provided
a Cosmological Theorem for standard look and say sequences in [Con]. However,
Conway’s proof of his Cosmological Theorem was not included in [Con] because
it involved a “very subtle and complicated argument, which (almost) reduced the
problem to tracking a few hundred cases”. Proofs of Conway’s Cosmological The-
orem can be found in [EZ] and [Lit]. In the negafibnary case, we will provide a
relatively simple proof. The steps in the proof are broken into lemmas, the first
of which shows there is a bound on the number of consecutive 1’s appearing in
negafibnary look and say sequence:

Lemma 2.21. Suppose x0 → x1 → x2 → · · · is a negafibnary look and say se-
quence. Whenever j > 0, xj is a compound of elements of the form 1m0n with
1 ≤ m ≤ 3 and n ≥ 0.
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Proof. If j > 0, xj starts with the negafibnary representation of some integer, and
thus the first bit in xj is a 1. Therefore xj is a compound of elements of the form
1m0n with m ≥ 1 and n ≥ 0. To show each m ≤ 3, suppose B = 111 appears
somewhere within xj . Since negafibnary representations cannot have consecutive
1’s, the first (resp. last) 1 in B must be the end (resp. start) of some negafibnary
representation, whence there cannot be another 1 in xj to the left (resp. right) of
B. Thus, there cannot be a run of more than 3 consecutive 1’s in xj . �

In order to show the number of consecutive 0’s in a negafibnary look and say
sequence is bounded, we need a more precise understanding of consecutive 0’s in
negafibnary representations. Part (3) of the following lemma gives us precisely that:

Lemma 2.22. Suppose n is an integer with k bits in its negafibnary representation.

(1) If k is odd, then Fk−1 < n ≤ Fk+1.
(2) If k is even, then −Fk+1 < n ≤ −Fk−1.
(3) If n > 0 and there is a run of r consecutive 0’s in the negafibnary repre-

sentation of n, then n ≥ Fr+1.

Proof. (1) Suppose k = 2` + 1 for some integer ` ≥ 0. The maximal negafibnary
representation with k bits is obtained by using the maximal number of positive
Fibonacci numbers, namely 1010 · · · 101 = (10)`1, which is the negafibnary repre-
sentation of the integer∑̀

i=0

F−2i−1 =
∑̀
i=0

(F−2i − F−2i−2) = F0 − F−2`−2 = 0− F−k−1 = Fk+1.

Similarly, we use the maximal number of negative Fibonacci numbers to obtain the
minimal k-bit negafibnary representation 100(10)`−1, which corresponds to

F−k +

`−1∑
i=1

F−2i = F−k +

`−1∑
i=1

(F−2i+1 − F−2i−1) = F−k + F−1 − F−2`+1

= Fk + 1− F2`−1 = Fk + 1− Fk−2 = 1 + Fk−1.

(2) The proof is similar to that of (1). Set k = 2`. Then the minimal k-bit
negafibnary representation is (10)`, which corresponds to∑̀

i=1

F−2i =
∑̀
i=1

(F−2i+1 − F−2i−1) = F−1 − F−2`−1 = 1− F2`+1 = 1− Fk+1.

The maximal k-bit negafibnary representation is 10(01)`−1, which corresponds to

F−k +

`−1∑
i=1

F−2i+1 = F−k +

`−1∑
i=1

(F−2i+2 − F−2i) = F−k + F0 − F−2`+2

= F−k − F−k+2 = −F−k+1 = −Fk−1.

(3) Let n denote the minimal positive integer whose negafibnary representation
contains a run of at least r consecutive 0’s, and let k denote the number of bits
in that representation. It follows from (1) and (2) that k will be the smallest odd
integer which allows for r consecutive 0’s. In other words, k = r + 1 if r is even
and k = r + 2 if r is odd. Moreover, n corresponds to the smallest such k-bit
representation with r consecutive 0’s, namely 10r or 10r+1. Therefore n = Fr+1 or
n = Fr+2. In either case, n ≥ Fr+1. �
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We are now in position to show that in any negafibnary look and say sequence,
the terms will eventually have at most five consecutive 0’s:

Lemma 2.23. Suppose the element 1m
′
0n

′
appears in the negafibnary decay of

1m0n. If 1 ≤ m ≤ 3 and n > 5, then 1 ≤ m′ ≤ 3 and n′ < n.

Proof. The inequality for m′ follows from Lemma 2.21. To show the inequality for
n′, let a and b denote the negafibnary representations of m and n respectively so
that 1m0n → a1b0. Since 1 ≤ m ≤ 3 we know a is one of 1, 100, or 101. Thus, if
1m

′
0n

′
appears in a1 then n′ ≤ 2 < 5 < n. On the other hand, if 1m

′
0n

′
appears

in b0, then there must exist a run of at least n′ − 1 consecutive 0’s in b. Whence
n ≥ Fn′ by part (3) of Lemma 2.22. Finally, since n > 5 we have Fn > n ≥ Fn′ ,
which implies n > n′. �

Theorem 2.24. (Negafibnary Cosmological Theorem) The terms of every negafib-
nary look and say sequence are eventually compounds of the nine elements listed in
the negafibnary periodic table (2.16). Consequently, every negafibnary look and say
sequence grows at the rate ϕ.

Proof. By Lemma 2.21 it suffices to show every look and say sequence with seed
of the form 1m0n with 1 ≤ m ≤ 3 has terms that are eventually compounds of the
nine elements listed in the periodic table (2.16). We will do so by inducting on n.
For the base case we consider the 18 seeds 1m0n with 1 ≤ m ≤ 3 and 0 ≤ n ≤ 5.
The following decay graph (which extends (2.18)) summarizes the decay of all 18
elements, completing the base case:

e1 e2e3

e4

e5e6

e7

e8 e9

13021304

104

1202

1204

1203

103
13

105

For the inductive step, fix n > 5 and assume all elements of the form 1m
′
0n

′
with

1 ≤ m′ ≤ 3 and 0 ≤ n′ < n eventually decay in into compounds of the elements
in (2.16). By Lemma 2.23, each 1m0n with 1 ≤ m ≤ 3 decays into a compound of

such 1m
′
0n

′
’s, and thus 1m0n eventually decays into the elements in (2.16). �
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Exercise 2.25. The goal of this exercise is to prove the following:

(Negabinary Cosmological Theorem) The terms of every negabinary look and say
sequence are eventually compounds of the ten elements listed in Exercise 2.19.

The following steps will lead to such a proof:

(1) Assume n > 0 has ` bits in its negabinary representation. Show that ` is

odd so that ` = 2k + 1 for some integer k. Moreover, show n ≥ 4k + 2

3
.

(2) Assume m and n have negabinary representations a and b respectively so
that 1m0n → a1b0. Now, let 2k1 + 1 and 2k2 + 1 denote the number of bits
in a and b respectively, and set k = max{k1, k2}. Show that the length of
a1b0 is less than the length of 1m0n whenever 4k + 4 < m+ n.

(3) Continuing with the notation of the previous part, use parts (1) and (2)
to show that the length of a1b0 is less than the length of 1m0n whenever

4k + 4 <
4k + 2

3
.

(4) Show that 4k + 4 <
4k + 2

3
if and only if k ≥ 3.

(5) Use the previous parts to show that the length of a1b0 is less than the
length of 1m0n whenever m ≥ 22 or n ≥ 22.

(6) Write a computer program6 to show that each of the 462 elements of the
form 1m0n with 1 ≤ m < 22 and 0 ≤ n < 22 eventually decays into
compounds of the ten elements listed in Exercise 2.19.

(7) Use the previous two parts to give an inductive proof that every element
of the form 1m0n with m > 0 and n ≥ 0 eventually decays into compounds
of the ten elements listed in Exercise 2.19. Explain why this proves The
Negabinary Cosmological Theorem.
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