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Chapter 1

Diagrams

1.1 Partition diagrams

The first diagrams we are going to consider are partition diagrams. The reason
to start with partition diagrams is that many interesting families of diagrams
can be viewed as special types of partition diagrams.

We define a partition of a set A to be a collection of mutually disjoint
nonempty subsets of A whose union is A. The disjoint subsets are called parts
of the partition. For example, {1, 4}, {2}, {3, 5} is a partition of {1, 2, 3, 4, 5}
into three parts. In particular (or by convention) there is a unique partition of
the empty set, namely the one with zero parts. There is also a unique partition
of any singleton set {x}; it has one part. A set with two elements {a, b} admits
exactly two partitions: {a}, {b} and {a, b}.

Exercise 1.1. (Bell numbers) The number of partitions of an n-element
set is called the nth Bell number. List the Bell numbers for n = 0, 1, 2, 3, 4.
You can check your answers by looking at Bell’s triangle (similar to Pascal’s
triangle). Here’s the top of Bell’s triangle:

1
1 2
2 3 5
5 ? ? ?
...

...
...

...
. . .

Every entry in the leftmost column is the same as the rightmost entry in the
previous row. All other entries are obtained by summing the entry 1 step to the
left with the entry 1 step to the left and 1 step up. Construct a couple more
rows. The leftmost column in Bell’s triangle lists the Bell numbers. Notice
that they grow very fast.

Given n ∈ Z≥0, write [n] = {i ∈ N : 1 ≤ i ≤ n} and [n]′ = {i′ : i ∈ [n]}.
For example, [3] = {1, 2, 3} and [4]′ = {1′, 2′, 3′, 4′}. Moreover, [0] = ∅ = [0]′.
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6 CHAPTER 1. DIAGRAMS

Now, given m,n ∈ Z≥0, a partition diagram of type m→ n is a diagrammatic
representation of a partition of [m] ∪ [n]′ obtained by (1) listing m vertices in
a bottom row and n vertices in a top row; (2) labelling the bottom row with
the elements of [m] and the top row with elements in [n]′, both in increasing
order from left to right; and (3) connecting vertices with edges in such a way
that there is a path between two vertices exactly when those vertices are in the
same part of the partition. We require that all edges be drawn in between the
two rows of vertices. For example, the following diagram is of type 4→ 3 and
corresponds to the partition {1, 3, 4}, {1′, 2, 3′}, {2′}:

Since the vertices’ labels are always increasing from left to right, we can draw
our diagrams without labelling the vertices without loosing any information.
We declare two partition diagrams to be equal if they represent the same par-
tition. For instance:

Exercise 1.2. Draw the partition diagram of type 4→ 4 corresponding to the
partition {1}, {2, 2′, 3′}, {3, 4′}, {4, 1′}.

Exercise 1.3. Draw all the partition diagrams of types 2→ 1 and 0→ 3.

1.2 Special types of partition diagrams

A partition diagram is called non-crossing∗ if it can be drawn in such a way
that no two edges cross (aside from at vertices). Here’s an example of a non-
crossing partition diagram:

Note that partition diagrams with crossings can be non-crossing since there are
multiple ways to draw the same diagram. As long as there is one way to draw
the diagram without crossings, the diagram is non-crossing.

∗Non-crossing partition diagrams are also called planar.
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Exercise 1.4. Draw a better picture of the following partition diagram to
show that it is non-crossing:

Exercise 1.5. How many non-crossing partition diagrams are there of type
4→ 0?

Hint: It might be easier to count the number of non-non-crossing partition
diagrams and use Exercise 1.1.

A partition diagram is called a Brauer diagram if all of the parts in the
corresponding partition have exactly 2 elements. In other words, a Brauer
diagram is a partition diagram where each vertex is connected to exactly one
other vertex. Here’s an example:

Exercise 1.6. Draw all the Brauer diagrams of type 1→ 3. How many Brauer
diagrams are there of type 2→ 3?

Exercise 1.7. How many Brauer diagrams are there of type m→ n?

An edge in a Brauer diagram is called a cap if its endpoints are both bottom
vertices, a cup if they’re both top vertices, and a propagating edge otherwise.
A Brauer diagram with only propagating edges (i.e. no caps or cups) is called
a permutation diagram. For example, here’s a permutation diagram:

Exercise 1.8. Draw all the permutation diagrams of type 3→ 3.

Exercise 1.9. How many permutation diagrams are there of type m→ n?

A Temperley-Lieb diagram is a non-crossing Brauer diagram. Here’s one:

Exercise 1.10. Draw all the Temperley-Lieb diagrams of type 4→ 2.
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Exercise 1.11. (Catalan numbers) The nth Catalan number, denoted Cn,
can be defined recursively by letting C0 = 1 and Cn+1 =

∑n
i=0 CiCn−i for

n ≥ 0. Use that formula to find the first few Catalan numbers. Prove that Cn
is the number of Temperley-Lieb diagrams of type 2n→ 0.

Exercise 1.12. Using the following pictures as a guide, describe a bijection
between the set of all non-crossing partition diagrams of type m→ n and the
set of all Temperley-Lieb diagrams of type 2m→ 2n.

1.3 Stacking products

We can “multiply” two diagrams together by stacking them. There are two
flavors of multiplication corresponding to the two ways to stack: vertically and
horizontally. We will start with vertical stacking. From now on we will write
D : m→ n to mean that D is a partition diagram of type m→ n.

Given partition diagrams D1 : l→ m and D2 : m→ n, we write D2 ?D1 for
the diagram obtained by stacking D2 on top of D1 (identifying the m middle
vertices). For example,

Now, we let D2 • D1 denote the partition diagram of type l → n such that
there is a path between two vertices in D2 •D1 if and only if there is a path
between the corresponding vertices in D2 ? D1. For instance, in the example
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above

In this example, there are two connected components in D2 ? D1 that did not
contribute to D2 •D1, highlighted below:

It will be important for us to keep track of the number of such components.
In general, we let `(D2, D1) denote the number of such components. In other
words, `(D2, D1) is the number of connected components in D2 ?D1 minus the
number of connected components in D2 •D1.

Exercise 1.13. Compute D2 •D1 and `(D2, D1) where

Exercise 1.14. Suppose D1 : l→ m and D2 : m→ n. Prove the following:

1. If D1 and D2 are non-crossing partition diagrams, then D2 •D1 is too.

2. If D1 and D2 are Brauer diagrams, then D2 •D1 is too.

3. If D1 and D2 are permutation diagrams, then D2 •D1 is too.

4. If D1 and D2 are Temperley-Lieb diagrams, then D2 •D1 is too.

Exercise 1.15. Suppose D1 : l→ m and D2 : m→ n. Prove that if either D1

or D2 is a permutation diagram, then `(D2, D1) = 0. Is the converse true?

Exercise 1.16. (Identity diagrams) Find a diagram 1n : n → n for each
n ∈ Z≥0 such that 1n •D = D = D • 1m whenever D : m→ n.

Exercise 1.17. Suppose D1 : k → l,D2 : l→ m, and D3 : m→ n. Prove:

1. (D3 •D2) •D1 = D3 • (D2 •D1).

2. `(D3, D2) + `(D3 •D2, D1) = `(D3, D2 •D1) + `(D2, D1).

The tensor product of two partition diagrams D1 : m1 → n1 and D2 : m2 →
n2, denoted D1 ⊗ D2, is the partition diagram of type m1 + m2 → n1 + n2
obtained by stacking D1 to the left of D2. For example,
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Exercise 1.18. Repeat Exercise 1.14 replacing •’s with ⊗’s.

Exercise 1.19. Let en : 2n→ 0 and dn : 0→ 2n be the following diagrams:

Prove that the map {D : m→ n} → {D : m+ n→ 0} given by

D 7→ en • (D ⊗ 1n)

is a bijection with inverse

D 7→ (D ⊗ 1n) • (1m ⊗ dn).

Explain why the bijection is still valid if we require the D’s to be any one of the
special types: non-crossing, Brauer, Temperley-Lieb. Use this bijection along
with Exercises 1.11 and 1.12 to give formulas for the number of Temperley-Lieb
diagrams of type m → n and non-crossing partition diagrams of type m → n
in terms of Catalan numbers.



Chapter 2

Diagram categories

2.1 Definition of a category

We are about to define the term category, and the definition can be a lot to
swallow. As motivation, consider the following three operations:

1. Vertical stacking of partition diagrams (see §1.3). Given D1 : k → l and
D2 : m→ n, the product D2 •D1 makes sense if and only if l = m.

2. Matrix multiplication. Given an l × k matrix A1 and an n ×m matrix
A2, the matrix product A2A1 makes sense if and only if l = m.

3. Function composition. Given functions f1 : K → L and f2 : M → N ,
the composition f2 ◦ f1 makes sense if and only if the sets L = M .

There are many applications of category theory, but the main reason that we
work with categories is they provide a uniform setting for studying operations
on stuff where the operation is only defined when the stuff is compatible. In the
language of category theory the stuff (diagrams, matrices, functions) are called
morphisms; the operation (vertical stacking, matrix multiplication, function
composition) is called composition; and the type of a morphism (m → n,
n×m, M → N) is described by a pair of objects (nonnegative integers, natural
numbers, sets). Keep the three examples above in mind when reading the
following:

Definition 2.1. A category C consist of the following data:

• A class of objects Ob C.

• A class of morphisms HomC(m,n) for every pair of objects (m,n). Given
f ∈ HomC(m,n) we will often write f : m → n. We call m the domain
of f and n the target of f .

• A composition map HomC(m,n) × HomC(l,m) → HomC(l, n) for every
triple of objects (l,m, n). We will use the notation f ◦ g : l → n for the
composition of f : m→ n and g : l→ m.

11
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The data above must satisfy the following axioms:

(C1) Every morphism has a unique domain and target.

(C2) (Identity morphisms) For all n ∈ Ob C there exists idn ∈ HomC(n, n)
such that f ◦ idn = f and idn ◦ g = g for all f : n→ m and g : m→ n.

(C3) (Composition is associative) (f ◦ g) ◦ h = f ◦ (g ◦ h) for all morphisms
f : m→ n, g : l→ m,h : k → l.

Here are the formal definitions of the examples of categories discussed above:

Example 2.2. (Partition diagrams) Let P denote the category with

• ObP = Z≥0.

• HomP(m,n) = {partition diagrams of type m→ n} for eachm,n ∈ Z≥0.

• The composition map is given by vertical stacking:

HomP(m,n)×HomP(l,m) → HomP(l, n)
(D2, D1) 7→ D2 •D1

Axiom (C1) follows from the fact that each partition diagram has a unique
number of bottom vertices (the domain) and a unique number of top vertices
(the target). Axioms (C2) and (C3) follow from Exercises 1.16 and 1.17.1
respectively.

Example 2.3. (Matrices over C) Let Mat denote the category with

• Ob Mat = Z≥0.

• HomMat(m,n) = {n×m matrices with entries in C} for all m,n ∈ Z≥0.

• Composition is given by matrix multiplication:

HomMat(m,n)×HomMat(l,m) → HomMat(l, n)
(A2, A1) 7→ A2A1

Remark 2.4. By convention, we declare that there is a unique 0 × n matrix
and a unique n× 0 matrix for all n ∈ Z≥0, which we denote by 0 in all cases.
Multiplying any matrix by these new zero matrices always results in 0.

Example 2.5. (The category of sets) Let Set denote the category with

• Ob Set is the collection of all sets.

• HomSet(M,N) = {functions from M to N} for all sets M and N .

• Composition is the usual composition of functions:

HomSet(M,N)×HomSet(L,M) → HomSet(L,N)
(f2, f1) 7→ f2 ◦ f1
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Exercise 2.6. Verify that Mat and Set satisfy axioms (C1)-(C3).

Exercise 2.7. (The category of relations) Given two sets M and N , a
relation R from M to N is a subset R ⊆ M × N . We write R : M → N to
indicate that R is a relation from M to N . We define the composition of two
relations R1 ⊆ L×M , R2 ⊆ M ×N to be the subset R2 ◦ R1 ⊆ L×N given
by R2 ◦ R1 = {(x, z) ∈ L × N : ∃y ∈ M with (x, y) ∈ R1 and (y, z) ∈ R2}.
Let Rel denote the category with

• Ob Rel is the collection of all sets.

• HomRel(M,N) = {relations from M to N} for all sets M and N .

• Composition is the composition of relations defined above:

HomRel(M,N)×HomRel(L,M) → HomRel(L,N)
(R2, R1) 7→ R2 ◦R1

Note that we declare two relations R : M → N and R′ : M ′ → N ′ to be equal
if and only if M = M ′, N = N ′, and R = R′ (equal as sets). It follows that
Rel satisfies axiom (C1). Verify that Rel satisfies (C2) and (C3).

2.2 Subcategories of P

Of the categories introduced in the previous section, the diagram category P
is the main focus of these notes. If we restrict ourselves to the various special
types of partition diagram discusses in §1.2, we obtain other interesting diagram
categories. These diagram categories are best described as “subcategories” of
P. Let’s be precise about what that term means:

Definition 2.8. Suppose C is a category. A subcategory D of C (written D ⊆ C)
consists of the following data:

• A class of objects ObD ⊆ Ob C.

• A class of morphisms HomD(m,n) ⊆ HomC(m,n) for each pair of objects
m,n ∈ ObD.

The data above must satisfy the following:

(SC1) (D has identities) idn ∈ HomD(n, n) for every n ∈ ObD.

(SC2) (D is closed under composition) The composition f ◦g ∈ HomD(l, n)
whenever f ∈ HomD(m,n) and g ∈ HomD(l,m).

Exercise 2.9. Show that subcategories are indeed categories. More precisely,
assume D is a subcategory of C. Show the composition maps for C restrict to
composition maps for D, and D satisfies (C1)-(C3).



14 CHAPTER 2. DIAGRAM CATEGORIES

The diagram categories NC,B,T L, and S
The categories NC,B, T L, and S are defined to be the subcategories of P with

ObNC = ObB = Ob T L = ObS = Z≥0

and morphisms given by

HomNC(m,n) = {Non-crossing partition diagrams of type m→ n},
HomB(m,n) = {Brauer diagrams of type m→ n},

HomT L(m,n) = {Temperley-Lieb diagrams of type m→ n},
HomS(m,n) = {permutation diagrams of type m→ n}.

Indeed, each of NC,B, T L, and S has identities (hence (SC1) is satisfied), and
by Exercise 1.14 each is closed under composition (hence (SC2) is satisfied).

Even and odd subcategories of B and T L
In Exercise 1.7 you ought to have shown that there are no Brauer diagrams
(hence no Temperley-Lieb diagrams) of type m → n unless m and n are both
odd or both even. In some sense, this means that the categories B and T L
each split into an even piece and an odd piece. Let us be more precise:

We start with B. The categories Bev and Bodd are defined as the subcate-
gories of B with objects

ObBev = {2n : n ∈ Z≥0},
ObBodd = {2n+ 1 : n ∈ Z≥0}.

and morphisms

HomBev (2m, 2n) = HomB(2m, 2n),

HomBodd(2m+ 1, 2n+ 1) = HomB(2m+ 1, 2n+ 1).

Note that both of these subcategories are obtained from B by selecting
a subset of the objects, and picking all the morphisms between the selected
objects. Such subcategories get a special name:

Definition 2.10. A subcategoryD ⊆ C is called full if HomD(m,n) = HomC(m,n)
for all m,n ∈ ObD.

Thus, Bev and Bodd are both full subcategories of B. Not all subcategories
are full. For instance, B is not a full subcategory of P since there are partition
diagrams which are not Brauer diagrams (i.e. there exist m,n ∈ Z≥0 such that
HomB(m,n) 6= HomP(m,n)). One nice property of full subcategories is that
they can be defined without checking (SC1) and (SC2) thanks to the following:

Proposition 2.11. Let C be an arbitrary category. Suppose D is a collection
of objects and morphisms in C such that HomD(m,n) = HomC(m,n) for all
m,n ∈ ObD. Then D is a full subcategory of C.
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Proof. If we can show D is a subcategory of C, then it will be full by the
definition of full. Hence, we must just check that D satisfies (SC1) and (SC2).

For (SC1), let n ∈ ObD. Then n ∈ Ob C since ObD ⊆ Ob C. Since C is a
category, idn ∈ HomC(n, n) = HomD(n, n), as desired.

For (SC2), suppose f ∈ HomD(m,n) and g ∈ HomD(l,m) for some objects
l,m, n ∈ ObD. Then f ∈ HomC(m,n) and g ∈ HomC(l,m) by our assumption
on D. Since C is a category, f ◦ g ∈ HomC(l, n) = HomD(l, n), as desired.

In particular, the previous proposition verifies that Bev and Bodd are indeed
subcategories of B. Moreover, that proposition implies that every subset of
objects in a category determines a unique full subcategory. We will exploit
this fact in order to define some categories in a new, more concise way. For
example, we define T Lev and T Lodd to be the full subcategories of T L with
objects

Ob T Lev = {2n : n ∈ Z≥0},
Ob T Lodd = {2n+ 1 : n ∈ Z≥0}.

2.3 Endomorphisms, isomorphisms, and idempotents

In this section we discuss various adjectives for morphisms. The terminology
developed in this section be used throughout the rest of the notes. However,
the reason we are introducing these new terms now is to get some more practice
working with categories.

Endomorphisms

A morphism f in a category is called an endomorphism if it has the same
domain and target, i.e. f : n → n. We write EndC(n) = HomC(n, n) for the
collection of all endomorphisms of n. For example:

1. Endomorphisms in P are diagrams with the same number of top and
bottom vertices. For instance, EndP(5) is the set of all partition diagrams
of type 5→ 5.

2. Endomorphisms in Mat are square matrices. For example EndMat(5) is
the set of all 5× 5 matrices.

3. Endomorphisms in Set are functions whose domain and target are equal.

Notice that endomorphism sets are closed under composition. In other
words, if f, g ∈ EndC(n) then f ◦ g ∈ EndC(n). If EndC(n) is a finite set,
as is the case in all of our diagram categories, then we can create a complete
“multiplication table”. For example, EndS(3) = {13, σ1, σ2, σ3, τ1, τ2} where
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Here is the multiplication table for EndS(3) where the entry in the row labelled
by x and column labelled by y is x • y:

13 σ1 σ2 σ3 τ1 τ2
13 13 σ1 σ2 σ3 τ1 τ2
σ1 σ1 13 τ1 τ2 σ2 σ3
σ2 σ2 τ2 13 τ1 σ3 σ1
σ3 σ3 τ1 τ2 13 σ1 σ2
τ1 τ1 σ3 σ1 σ2 τ2 13
τ2 τ2 σ2 σ3 σ1 13 τ1

Note: EndS(n) is often denoted Sn and called a symmetric group. With this
notation, the table above is the multiplication table for S3.

Exercise 2.12. Construct multiplication tables for the so-called diagram monoids∗

EndP(1), EndT L(2), EndS(2), EndB(2), and EndT L(3).

Isomorphisms

A morphism f : m → n is called an isomorphism if there exists a morphism
g : n→ m such that f ◦ g = idn and g ◦ f = idm. Such a g is called an inverse
of f and we write g = f−1.

For example, the partition diagram

is an isomorphism in the category P with

Exercise 2.13. Prove that if D is a permutation diagram, then D is an iso-
morphism in the category P. In particular, given a permutation diagram D,
explain how to draw D−1.

Example 2.14. Isomorphisms in Mat are invertible matrices. For example,

the matrix A =

(
3 1
5 2

)
is an isomorphism in Mat with A−1 =

(
2 −1
−5 3

)
.

More generally, any square matrix with nonzero determinant is an isomorphism
in Mat. The inverse of such a matrix is given by Cramer’s formula, and in
practice can be computed using elementary row operations.

∗A monoid is a set equipped with a single associative operation and an identity element.
In any category, EndC(n) is a monoid. A monoid in which every element is invertible is called
a group. Every element of Sn = EndS(n) is invertible (see Exercise 2.13), which is why Sn
is called a symmetric group.
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Example 2.15. Isomorphisms in Set are invertible functions. A standard
result in set theory is that a function is invertible if and only if it is a bijection
(i.e. one-to-one and onto). Thus, a function is an isomorphism in Set exactly
when it is a bijection.

A closer look at isomorphisms in P
Our next goal is to prove the following classification of isomorphisms in P:

Proposition 2.16. D is an isomorphism in P if and only if D is a permutation
diagram.

Note that proving one of the implications in the previous proposition is
Exercise 2.13. Hence, we are required to show that the only isomorphisms
in P are permutation diagrams. To do so, let us first examine the analogous
proposition in Mat:

Proposition 2.17. A is an isomorphism in Mat if and only if A is a square
matrix with nonzero determinant.

Proof. The fact that square matrices with nonzero determinants are invertible
(hence isomorphisms) is discussed in Example 2.14. Here’s one way to prove
the other direction: The rank of a matrix A, denoted rk(A), is equal to the
number of linearly independent columns in A. Here are a couple well-known
properties of rank:

(RK1) rk(A) ≤ min{m,n} whenever A is an n×m matrix.

(RK2) rk(A2A1) ≤ min{rk(A1), rk(A2)} for any compatible matricesA1, A2.

(RK3) Suppose A is an n× n matrix. det(A) 6= 0 if and only if rk(A) = n.

Now, suppose A is an n×m invertible matrix. Then we know there exists an
m × n matrix A−1 with AA−1 = In and A−1A = Im. Thus, using (RK2) we
have n = rk(In) ≤ rk(A) and m = rk(Im) ≤ rk(A). However, by (RK1) we
know rk(A) ≤ n and rk(A) ≤ m. It follows that n = rk(A) = m. In particular,
A is a square matrix. Moreover, by (RK3) we have det(A) 6= 0.

We can prove Proposition 2.16 in a similar manner, but we need a gadget
to play the role of rank: The core of a partition diagram D : m → n, written
core(D), is the number of connected components in D that contain both a top
and a bottom vertex. For example, core(D) = 3 where

The following exercise requests proofs for the core analogs of (RK1)-(RK3):
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Exercise 2.18. Prove the following:

(CR1) core(D) ≤ min{m,n} whenever D : m→ n.

(CR2) core(D2 •D1) ≤ min{core(D1), core(D2)} for any compatible parti-
tion diagrams D1, D2.

(CR3) Suppose D is a partition diagram of type n→ n. D is a permutation
diagram if and only if core(D) = n.

Exercise 2.19. Using the previous exercise, mimic the proof of Proposition
2.17 to prove Proposition 2.16.

Isomorphic objects

Two objects m,n ∈ Ob C are called isomorphic in C if there is an isomorphism
in HomC(m,n).

Example 2.20. It follows from Proposition 2.16 that m and n are isomorphic
in P if and only if m = n. Similarly, m and n are isomorphism in Mat if and
only if m = n.

Exercise 2.21. Suppose D ⊆ C are categories and m,n ∈ ObD. Prove that
if m is isomorphic to n in D, then m is isomorphic to n in C.

Exercise 2.22. Suppose m,n ∈ Z≥0 and D is a subcategory of P. Use Exam-
ple 2.20 and Exercise 2.21 to show that m and n are isomorphic in D if and
only if m = n.

Example 2.23. Since isomorphisms in Set are bijections, it follows that two
sets are isomorphic in Set if and only if they have the same cardinality.

Idempotents

Given a morphism e in any category, the composition e2 = e ◦ e is defined if
and only if e is an endomorphism. An idempotent is a morphism e such that
e2 = e. For example, all identity morphisms are idempotents. However, not all
idempotents are identity morphisms. For example, both morphisms in EndP(1)
are idempotents (see Exercise 2.12). Here’s another example: Let B : 1 → 3
and D : 3→ 1 denote the following diagrams:

Then D • B = 11, and one might be tempted to conclude that B and D are
inverse isomorphisms, contradicting the fact that 1 and 3 are not isomorphic
objects in P (Example 2.20). Of course, B and D are not inverse isomorphisms
since B •D 6= 13. However, you can check that B •D is an idempotent.

Exercise 2.24. Suppose f : m → n and g : n → m are two morphisms in a
category such that g ◦ f = idm. Show that f ◦ g is an idempotent.
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Exercise 2.25. Show that the matrix

(
1 0
0 0

)
is an idempotent in Mat. More

generally, show that any square matrix whose entries are all 0’s except some
1’s on the main diagonal is an idempotent in Mat. These are not the only

idempotents in Mat; for instance the matrix

(
1/2 1/2
1/2 1/2

)
is an idempotent.

In fact any 2× 2 matrix with determinant 0 and trace 1 is an idempotent.

Exercise 2.26. Show that constant functions are idempotents in Set. Given
an example of a function e : {1, 2, 3} → {1, 2, 3} that is not a constant function,
and not the identity function, but is an idempotent.

Exercise 2.27. Show that the only idempotents which are also isomorphisms
are the identity morphisms.





Chapter 3

Functors

3.1 Motivating examples: permutations

We already know what permutation diagrams are. In this section we will
explore permutations in Mat (permutation matrices) and in Set (set permu-
tations). The connection between permutation diagrams and the latter permu-
tations will serve as motivation for the definition of a functor in §3.2.

Permutation matrices

A permutation matrix is a square matrix whose entries are all 0’s and 1’s such
that there is a unique 1 in each row and each column. For example,

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 .

To each permutation diagram D : n → n, we associate an n × n permutation
matrix A = F (D) as follows: The i, j-entry∗ of A is 1 if and only if the
ith top vertex of D is connected to the jth bottom vertex (reading vertices
left to right). For example, the matrix above is associated to the following
permutation diagram:

We have just described a map F : EndS(n) → EndMat(n) for all n ∈ Z≥0.
This map has the property F (1n) = In for all n. Furthermore, it respects the
composition in the two categories:

Exercise 3.1. Suppose D and D′ are permutation diagrams of type n → n
with associated permutation matrices A = F (D) and A′ = F (D′). Verify

∗The i, j-entry of a matrix is the one in the ith row and jth column.

21
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that F (D • D′) = AA′. Thus, multiplication of permutation matrices can be
accomplished by vertically stacking the corresponding permutation diagrams.

One can also read off properties of a permutation matrix directly from the
corresponding permutation diagram. For instance, the parity of a permutation
diagram D is the parity of the number of crossings when the diagram is drawn
in generic position (so that exactly two edges meed at each crossing, and edges
are not tangent at crossings). For example, the permutation diagram pictured
above is even since it has 4 crossings. It turns out that the determinant of a
permutation matrix relies only on the parity of the corresponding diagram:

det(F (D)) = (−1)D =

{
0, if D is even;

1, if D is odd.
(3.1)

Set permutations

Given a set X, a set permutation on X is a bijection X → X. To each
permutation diagram D : n → n we associate a set permutation F (D) on
[n] = {1, . . . , n} as follows: Let F (D) be the function [n] → [n] defined by
mapping j 7→ i whenever the ith top vertex of D is connected to the jth
bottom vertex (reading vertices left to right). For example, if we let D denote
the permutation drawn above, then

F (D) : 1 7→ 2
2 7→ 4
3 7→ 3
4 7→ 1.

In this case we have a map F : EndS(n) → EndSet([n]) for all n ∈ Z≥0. This
map has some nice properties, similar to the properties we observed in the case
of permutation matrices. For instance, F (1n) = id[n] for all n.

Exercise 3.2. Suppose D and D′ are permutation diagrams of type n → n.
Verify that F (D •D′) = F (D) ◦F (D′). Thus, composition of set permutations
reduces to vertically stacking the corresponding permutation diagrams.

3.2 Definition of a functor

In the previous section we saw two examples where morphisms in one cate-
gory (S) were mapped to morphisms in another category (Mat or Set), and
these mappings sent identity morphisms to identity morphisms and preserved
composition. Although it was not emphasized, those maps were consistent on
objects in the sense that if D and D′ were two diagrams of the same type, then
F (D) and F (D′) also had the same type (i.e. domain and target). These are
the main ingredients in the following definition:

Definition 3.3. Given two categories C,D, a functor F from C to D, written
F : C → D consists of the following data:
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• A map Ob C → ObD written n 7→ F (n).

• A map HomC(m,n)→ HomD(F (m), F (n)), written g 7→ F (g), for every
m,n ∈ Ob C.

The data above must satisfy the following properties:

(F1) F (idn) = idF (n) for every n ∈ Ob C.

(F2) F (f ◦ g) = F (f) ◦ F (g) for all morphisms g : l→ m and f : m→ n in C.

Example 3.4. The discussion of permutation matrices in the previous sec-
tion describes a functor F : S → Mat. The functor is given on objects by
F (n) = n for all n ∈ Z≥0, and on morphisms by letting F (D) denote the n×n
permutation matrix associated to the permutation diagram D : n→ n.

Example 3.5. The discussion of set permutations in the previous section
describes a functor F : S → Set given on objects by F (n) = [n] = {1, . . . , n}
for all n ∈ Z≥0, and on morphisms by letting F (D) denote the set permutation
[n]→ [n] associated to the permutation diagram D : n→ n.

Example 3.6. (Identity functors) Suppose C is an arbitrary category. The
functor IdC : C → C is defined to be the identity map on both objects and
morphisms. More precisely, IdC(n) = n for all n ∈ Ob C and IdC(g) = g for all
morphisms g : m→ n in C.

Exercise 3.7. The goal of this exercise is to describe a functor F : P → Rel.
On objects, this functor is given by F (n) = [n] = {1, . . . , n}. To define F
on morphisms, let D denote a partition diagram of type m → n. We let
F (D) ⊆ [m]× [n] denote the relation where (j, i) ∈ F (D) if and only if the ith
top vertex of D is connected to the jth bottom vertex (reading vertices left to
right). For example, if

then F (D) = {(1, 1), (5, 1), (6, 4), (6, 6), (7, 3), (7, 5)} ⊆ [7] × [6]. Prove that F
is a functor.

Exercise 3.8. Define F : NC → T Lev on objects by F (n) = 2n. For mor-
phisms, F is the bijection

HomNC(m,n)→ HomT Lev (2m, 2n)

prescribed by Exercise 1.12. Verify that this defines a functor F : NC → T Lev.

Exercise 3.9. Verify that the following maps define a functor F : Bev → Bodd.
On objects, F (n) = n + 1. For morphisms F (D) = D ⊗ 11 (i.e. add a single
vertical edge on the right).
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Exercise 3.10. Consider the following candidate for a functor F : P → P.
On objects, F (n) = n+ 1. For morphisms, F (D) is the diagram obtained from
D by adding a pair of vertices to the right of D, and connecting them to their
respective neighbors as illustrated below:

Does F satisfy (F1)? How about (F2)?

3.3 Isomorphic categories

Recall that two sets are called isomorphic if and only if there is a bijection be-
tween them (Examples 2.15 and 2.23). This essentially means that isomorphic
sets are the “same” set up to relabelling their elements (the bijection prescribes
the relabeling). In this section we use functors to define what it means for two
categories to be isomorphic, and this definition will mimic that of isomorphic
sets. Indeed, roughly speaking, two categories are isomorphic if they are the
“same” category up to relabelling all the objects and morphisms. In order to
properly discuss isomorphic categories, we first need to generalize the operation
of function composition to functors.

Composition of functors

Since a functor consists of maps (of objects and morphisms) and we can com-
pose maps (of objects and morphisms), we can compose functors. More pre-
cisely, given functors F : D → E and G : C → D we define their composition
F ◦ G : C → E by setting F ◦ G(n) = F (G(n)) for all objects n ∈ Ob C and
F ◦ G(f) = F (G(f)) for all morphisms f in C. The following computations
verify that F ◦G satisfies (F1) and (F2), whence F ◦G is a functor:

F ◦G(idn) = F (G(idn)) (definition of F ◦G)

= F (idG(n)) (G is a functor)

= idF (G(n)) (F is a functor)

= idF◦G(n) (definition of F ◦G),

F ◦G(f ◦ g) = F (G(f ◦ g)) (definition of F ◦G)

= F (G(f) ◦G(g)) (G is a functor)

= F (G(f)) ◦ F (G(g)) (F is a functor)

= (F ◦G(f)) ◦ (F ◦G(g)) (definition of F ◦G).
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Example 3.11. Let F : S → Mat be the functor from Example 3.4 and let
G : S → S be the functor given on objects by G(n) = n+ 1 and on morphisms
by G(D) = D⊗ 11 (add a single vertical edge on the right, as in Example 3.9).
The functor F ◦ G : S → Mat maps a permutation diagram D : n → n to
F (G(D)) = F (D⊗ 11), which is the permutation matrix associated to D⊗ 11.
Here’s an explicit example:

In general, F ◦G maps D to the (n+ 1)× (n+ 1) block matrix

(
F (D) 0

0 1

)
.

Exercise 3.12. Let G : S → S be as in Example 3.11. Now, for each k ∈ N we
define the functor Gk : S → S recursively by setting G1 = G and Gk = G◦Gk−1
for all k > 1 (in other words, Gk is obtained by composingG with itself k times).
What is Gk(n) for any object n ∈ ObS? Describe Gk(D) for any permutation
diagram D as a tensor product of two diagrams. Give a description of F ◦Gk(D)
in terms of a block matrix.

Exercise 3.13. Let F : S → Set be as in Example 3.5 and let Gk : S → S be
as in Exercise 3.12. Give a detailed description of the functor F ◦Gk : S → Set
on both objects and morphisms.

Equality of functors

As we will soon see, to prove two categories are isomorphic amounts to verifying
a couple equalities of functors. Let us first be precise about what is required
to prove functors are equal. Suppose F : C → D and F ′ : C′ → D′ are functors.
F = G if and only if each of the following hold:

• C = C′,

• D = D′,

• F (n) = F ′(n) for all n ∈ Ob C,

• F (g) = F ′(g) for all morphisms g in C.

Example 3.14. For any functor F : C → D we have F ◦ IdC = F . Indeed,
both functors are from C → D. Moreover, for all n ∈ Ob C:

F ◦ IdC(n) = F (IdC(n)) (definition of composition)

= F (n) (definition of IdC).
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Finally, for all morphisms g in C:

F ◦ IdC(g) = F (IdC(g)) (definition of composition)

= F (g) (definition of IdC).

Similarly, IdD ◦ F = F .

Exercise 3.15. Let Reln denote the full subcategory of Rel with

Ob Reln = {[n] : n ∈ Z≥0}.

Let F : P → Reln denote the functor defined on objects by F (n) = [n]. To
define F on morphisms, let D denote a partition diagram of type m→ n. We
let F (D) ⊆ [m]× [n] denote the relation with (j, i) ∈ F (D) if and only if the ith
top vertex of D is connected to the jth bottom vertex (reading left to right).
Explain why F is not equal to the similar functor defined in Example 3.7.

Next, let G : Reln → P be the following functor. On objects, G([n]) = n.
To define G on morphisms, let R ⊆ [m]×[n] be a relation. Let G(R) denote the
partition diagram obtained by drawing an edge connecting the ith top vertex
to the jth bottom vertex whenever (j, i) ∈ R. For example, if

R = {(1, 1), (1, 2), (2, 4), (4, 4), (5, 4)} ⊆ [5]× [4],

then G(R) is the following diagram:

Prove that F ◦G = IdReln but G ◦ F 6= IdP .

Isomorphic categories

Compare the following definitions with the definitions of isomorphisms and
isomorphic objects in §2.3†. A functor is F : C → D is called an isomorphism
of categories if there exists a functor G : D → C such that F ◦ G = IdD and
G ◦ F = IdC . In this case, we write G = F−1. Moreover, we say C and D are
isomorphic categories and write C ∼= D.

Exercise 3.16. Prove the following hold for all categories C, D, and E :

• C ∼= C.

• If C ∼= D, then D ∼= C.

• If C ∼= D and D ∼= E , then C ∼= E .

†There is a category Cat whose objects are categories and morphisms are functors.
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Proposition 3.17. Let C and D be categories whose objects and morphisms
form sets‡. A functor F : C → D is an isomorphism of categories if and
only if the corresponding maps on objects Ob C → ObD and on morphisms
HomC(m,n)→ HomD(F (m), F (n)) are all bijections.

Proof. If F is an isomorphism of categories, then the corresponding maps on
objects and morphisms are invertible, hence bijective.

On the other hand, if F induces bijective (hence invertible) maps on objects
and morphisms, then the collection of inverse maps prescribes a map G : D → C
which is well defined on both objects and morphisms such that F ◦ G = IdD
and G ◦ F = IdC . To complete the proof we need to verify that G is a functor.
To do so, notice that

G(idn) = G(idF◦G(n)) (since F ◦G = IdD)

= G(F (idG(n))) (since F is a functor)

= idG(n) (since G ◦ F = IdC)

whence G satisfies (F1). The following verifies that G satisfies (F2):

G(f ◦ g) = G(F (G(f)) ◦ F (G(g))) (since F ◦G = IdD)

= G(F (G(f) ◦G(g))) (since F is a functor)

= G(f) ◦G(g) (since G ◦ F = IdC)

Example 3.18. Let Bijn denote the subcategory of Set defined by

Ob Bijn = {[n] : n ∈ Z≥0},

HomBijn([m], [n]) = {bijections from [m]→ [n]}.

Since there’s a bijection from [m] to [n] if and only if m = n, it follows that
HomBijn([m], [n]) = ∅ whenever m 6= n. Therefore, morphisms in Bijn are
exactly set permutations. Let F : S → Bijn be the functor which agrees with
the functor of the same name from Example 3.5 on everything except their
target categories. Since the assignment D 7→ F (D) gives a bijection between
diagram permutations of type n → n and set permutations on [n], it follows
from Proposition 3.17 that F is an isomorphism of categories. Hence S ∼= Bijn.

Exercise 3.19. Let PMat denote the subcategory of Mat defined by setting
Ob PMat = Ob Mat and HomPMat(m,n) = {n × m permutation matrices}
for all m,n ∈ Z≥0. Prove that S ∼= PMat.

‡Such categories are called small. All of the diagram categories we will consider are
small, but there are plenty of large (not small) categories. For example Set is large since
the collection of all sets does not form a set – just ask Bertrand Russell. I expect that the
proposition is true without the assumption that C and D are small, but I don’t care enough to
check the details. In any case, I’d rather only talk about bijections between sets as opposed
to ones between proper classes.
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Exercise 3.20. Prove that NC ∼= T Lev.

Exercise 3.21. Why is the functor F : P → Reln in Exercise 3.15 is not an
isomorphism. Explain why knowing F is not an isomorphism is not sufficient
to conclude that P and Reln are not isomorphic. Now, count the number
of elements (relations) in the set HomReln([2], [1]). Use that count along with
Exercise 1.1 and Proposition 3.17 to prove that P and Reln are not isomorphic.
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Strict monoidal categories

4.1 Motivating examples: other matrix and function
operations

Up to this point, when discussing a category we have focussed on a single
operation (vertical stacking of diagram, matrix multiplication, function com-
position, etc.). In this chapter we develop the categorical framework which
allows for a pair of operations. The main example to keep in mind is a diagram
category with the two operations of vertical and horizontal stacking. There
are a couple important properties of this pair of operations. First, horizontally
stacking identity diagrams yields another identity diagram:

1n ⊗ 1n′ = 1n+n′ . (4.1)

Also, let us make the following diagrammatic observation:

In other words,

(B ⊗B′) • (D ⊗D′) = (B •D)⊗ (B′ •D′) (4.2)

for all diagrams B : m → n, B′ : m′ → n′, D : l → m, D′ : l′ → m′. In
this section we look at a few more examples of operations in categories which
satisfy formulae similar to (4.1) and (4.2).

Example 4.1. (Direct sums of matrices) Given an n×m matrix A and a
n′ ×m′ matrix A′, their direct sum is the (n+ n′)× (m+m′) block diagonal
matrix

A⊕A′ =

(
A 0
0 A′

)
.

29
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The direct sum of identity matrices is another identity matrix: In⊕In′ = In+n′ .
Moreover, given matrices A (n×m), A′ (n′ ×m′), B (m× l), and B′ (m′ × l′)
we have

(A⊕A′)(B ⊕B′) =

(
A 0
0 A′

)(
B 0
0 B′

)
=

(
AB 0
0 A′B′

)
= (AB)⊕ (A′B′).

Example 4.2. (Kronecker products of matrices) Given an n×m matrix
A and a n′×m′ matrix A′, their Kronecker product is the (nn′)×(mm′) matrix
which has the following block form:

A⊗A′ =

a1,1A
′ · · · a1,mA

′

...
...

an,1A
′ · · · an,mA

′

 where A =

a1,1 · · · a1,m
...

...
an,1 · · · an,m

 .

For example,

(
−1 2
0 1

)
⊗

2 1
1 0
3 −2

 =


−2 −1 4 2
−1 0 2 0
−3 2 6 −4
0 0 2 1
0 0 1 0
0 0 3 −2

 . (4.3)

Kronecker products of identity matrices are identity matrices: In⊗ In′ = Inn′ .

Exercise 4.3. Given matrices A (n × m), A′ (n′ × m′), B (m × l), and B′

(m′ × l′) prove that

(A⊗A′)(B ⊗B′) = (AB)⊗ (A′B′). (4.4)

Hint: We can index the entry ai,ja
′
i′,j′ in A ⊗ A′ by a tuple (i, i′, j, j′). For

example, the (1, 3, 2, 1)-entry in (4.3) is 6. Compute the (i, i′, j, j′)-entry in
both sides of (4.4).

Example 4.4. (Cartesian products) Given functions f : M → N and
f ′ : M ′ → N ′, their Cartesian product is the function

f × f ′ : M ×M ′ → N ×N ′
(x, x′) 7→ (f(x), f ′(x′)).

The Cartesian product of two identity functions is another identity function:
idN × idN ′ = idN×N ′ . Moreover, given functions f : M → N , f ′ : M ′ → N ′,
g : L→M , and g′ : L′ →M ′, we have

(f × f ′) ◦ (g × g′)(x, x′) = f × f ′(g × g′(x, x′))
= f × f ′(g(x), g′(x′))

= (f(g(x)), f ′(g′(x′)))
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= (f ◦ g(x), f ′ ◦ g′(x′))
= (f ◦ g)× (f ′ ◦ g′)(x, x′)

for all (x, x′) ∈ L× L′. Therefore (f × f ′) ◦ (g × g′) = (f ◦ g)× (f ′ ◦ g′).

Example 4.5. (Disjoint unions) The disjoint union of sets M and M ′ is
the set

M tM ′ = {(x, 0) : x ∈M} ∪ {(x′, 1) : x′ ∈M ′}.

Now, given functions f : M → N and f ′ : M ′ → N ′, their disjoint union is the
function

f t f ′ : M tM ′ → N tN ′
(x, 0) 7→ (f(x), 0)

(x′, 1) 7→ (f ′(x′), 1)

Note that the disjoint unions of two identity functions is another identity func-
tion: idN t idN ′ = idNtN ′ .

Exercise 4.6. Given functions f : M → N , f ′ : M ′ → N ′, g : L → M , and
g′ : L′ → M ′, verify that (f t f ′) ◦ (g t g′) = (f ◦ g) t (f ′ ◦ g′) by calculating
the images of (x, 0) and (x′, 1) for arbitrary x ∈ L and x′ ∈ L′.

4.2 Bifunctors

Compare the following definition with the operation of horizontal stacking in
diagram categories and the other examples of operations in §4.1.

Definition 4.7. A bifunctor � on a category C consists of the following data:

• A map Ob C ×Ob C → Ob C written (n, n′) 7→ n� n′.

• A map HomC(m,n) × HomC(m
′, n′) → HomC(n � n′,m � m′), written

(f, f ′) 7→ f � f ′, for every m,n,m′, n′ ∈ Ob C.

The data above must satisfy the following properties:

(B1) idn � idn′ = idn�n′ for every n, n′ ∈ Ob C.

(B2) (f � f ′) ◦ (g � g′) = (f ◦ g) � (f ′ ◦ g′) for all morphisms f : m → n,
f ′ : m′ → n′, g : l→ m, g′ : l′ → m′ in C.

Example 4.8. Horizontal stacking gives a bifunctor ⊗ on P. We already
know how this bifunctor acts on morphisms (stack diagrams horizontally). On
objects we set n⊗n′ = n+n′. Properties (4.1) and (4.2) verify that ⊗ satisfies
(B1) and (B2) respectively. Note that ⊗ can also be viewed as a bifunctor on
NC, B, T L, or S (see Exercise 1.18).

Exercise 4.9. Determine which of the following diagram categories horizontal
stacking defines a bifunctor ⊗ on: Bev, Bodd, T Lev, T Lodd.
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Example 4.10. The direct sum of matrices gives a bifunctor ⊕ on Mat. On
objects we set n ⊕ n′ = n + n′. The definition of ⊕ on morphisms (matrices)
as well as the verification of (B1) and (B2) can be found in Example 4.1.

Example 4.11. The Kronecker product of matrices gives another bifunctor ⊗
on Mat. On objects we set n ⊗ n′ = nn′. The definition of ⊗ on morphisms
(matrices) as well as the verification of (B1) and (B2) can be found in Example
4.2 and Exercise 4.3.

Example 4.12. It follows from Example 4.4 that the Cartesian product defines
a bifunctor × on Set.

Example 4.13. It follows from Example 4.5 and Exercise 4.6 that the disjoint
union defines a bifunctor t on Set.

4.3 Definition of a strict monoidal category

Our main example of a bifunctor (horizontal stacking of diagrams) satisfies
some additional nice properties. First off, horizontal stacking is associative:

(D1 ⊗D2)⊗D3 = D1 ⊗ (D2 ⊗D3) (4.5)

for all partition diagrams D1, D2, D3. Moreover, there is a special (empty)
diagram that acts as a unit with respect to horizontal stacking:

D ⊗ 10 = D = 10 ⊗D (4.6)

for any partition diagram D. A category equipped with a bifunctor and such
nice properties gets a special name:

Definition 4.14. A strict monoidal category is a triple of data (C,�,1) where:

• C is a category.

• � is a bifunctor on C.

• 1 is an object in C called the unit object.

The data above must satisfy the following properties:

(M1) f � id1 = f = id1 � f for every morphism f in C.

(M2) (f � g)� h = f � (g � h) for all morphisms f, g, h in C.

Example 4.15. Formulae (4.5) and (4.6) verify that (P,⊗, 0) is a strict
monoidal category. Similarly, (NC,⊗, 0), (B,⊗, 0), (T L,⊗, 0), and (S,⊗, 0)
are all strict monoidal categories.
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Example 4.16. Direct sums of matrices (see Example 4.1) give rise to a strict
monoidal category (Mat,⊕, 0). The following computation verifies (M1):

A⊕ 0 = A = 0⊕A,

where 0 in the line above denotes the unique 0 × 0 matrix, which exists by
convention (see Remark 2.4∗). Here’s the verification of (M2):

(A⊕B)⊕C =

(
A 0
0 B

)
⊕C =

A 0 0
0 B 0
0 0 C

 = A⊕
(
B 0
0 C

)
= A⊕ (B⊕C).

Exercise 4.17. Show that (Mat,⊗, 1) is a strict monoidal category. Take
care in verifying (M2).

Exercise 4.18. Show that A⊕B and A⊗B are permutation matrices whenever
A and B are. Conclude that both (PMat,⊕, 0) and (PMat,⊗, 1) are strict
monoidal categories.

Exercise 4.19. Although the defining properties of a strict monoidal category
are in terms of only morphisms, the analogous properties for objects hold too.
Apply axiom (C1) to (M1) and (M2) to prove the following hold in any strict
monoidal category:

1. n� 1 = n = 1� n for all n ∈ Ob C.

2. (l �m)� n = l � (m� n) for all l,m, n ∈ Ob C.

As a consequence, we have the following:

Proposition 4.20. Unit objects in strict monoidal categories are unique. In
fact, if (C,�,1) is a strict monoidal category, and 1′ is any object in C satis-
fying either 1′ � n = n or n� 1′ = n for all n ∈ Ob C, then 1′ = 1.

Proof. By part 1 of Exercise 4.19 we have 1′�1 = 1′ = 1�1′. The assumption
on 1′ implies that either 1′ � 1 = 1 or 1� 1′ = 1.

4.4 Non-strict monoidal categories

Not every bifunctor determines a strict monoidal category. For example, con-
sider the bifunctor × on Set. If we’re careful, we can see that this bifunctor is
not associative on objects:

(L×M)×N 6= L× (M ×N). (4.7)

Indeed, elements of the left side have the form ((x, y), z) whereas elements of
the right look like (x, (y, z)). These are close to the same, but they are not

∗That remark used to be a footnote so you may have ignored it, which is fine until now.
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equal. It follows from part 2 of Exercise 4.19 that × cannot be used to give
Set the structure of a strict monoidal category.

We can also arrive at the same conclusion by looking for unit objects. Sup-
pose 1 is a set such that N × 1 = N for any set N . Comparing sizes will
lead you to the conclusion that 1 must be a singleton set: 1 = {?}. Although
N ×{?} is not equal to N on the nose, there is an obvious way to identify their
elements: x ↔ (x, ?). But what singleton set do you pick? Indeed, there is
not a unique choice for a unit object. Hence by Proposition 4.20, × cannot be
used to give Set the structure of a strict monoidal category.

The triple (Set,×, {?}) is an example of a non-strict monoidal category. I
don’t want to give the precise definition of that term since our primary concern
are diagram categories, which are strict monoidal categories. However, I think
it’s useful to know that there are plenty of important bifunctors in mathematics
which are “almost associative” and “almost” have unit objects. Making these
“almost-statements” precise involves plenty of isomorphisms. Indeed, although
the sets in (4.7) are not equal, they are isomorphic in Set via the function
((x, y), z) 7→ (x, (y, z)). Moreover, although there are infinitely many singleton
sets, they are all isomorphic in Set.

Exercise 4.21. Show that the bifunctor t on Set is not associative. Find a
unit object 1 so that (Set,t,1) is a non-strict monoidal category, whatever
that means. Is the unit object unique?

Strictification

One reason I am okay with dodging the definition of a non-strict monoidal
category is that it turns out every non-strict monoidal category is equivalent (in
some precise way) to a strict one. The process of replacing a non-strict monoidal
category with an equivalent strict monoidal category is called strictification.
The rest of this section is devoted to the strictifications of (FinSet,t,1) and
(FinSet,×, {?}), where FinSet is the full subcategory of Set whose objects
are finite sets. To start, let Setn denote the full subcategory of Set with

Ob Setn = {[n] : n ∈ Z≥0}.

Exercise 4.22. Show that neither the disjoint union t nor the Cartesian
product × define a bifunctor on Setn.

To strictify the disjoint union, we define the bifunctor ] on the category
Setn as follows. On objects we set [n] ] [n′] = [n + n′]. To define ] on
morphisms, suppose f : [m]→ [n] and g : [m′]→ [n′] are two functions. Set

f ] g : [m+m′] → [n+ n′]
j 7→ f(j) (1 ≤ j ≤ m)

m+ j 7→ n+ g(j) (1 ≤ j ≤ m′)
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Let’s compare the operations t and ] with a specific example. Let f and g
denote the following functions:

Applying the operations t and ] gives the following:

Both operations are, in some sense, obtained by stacking the rule for f on top
of the rule for g. The only difference is the labelling of the elements in the
domain and target.

Exercise 4.23. Show that ] satisfies (B1) and (B2). Find the unique unit
object 1 ∈ Ob Setn that makes (Setn,],1) a strict monoidal category. Be
sure to verify (M1) and (M2).

Exercise 4.24. Show that f ]g is a bijection whenever f and g are. Conclude
that (Bijn,],1) is also a strict monoidal category.

To strictify the Cartesian product, we will define a bifunctor ∗ on Setn. For
objects we set [n]∗ [n′] = [nn′]. Note that [n]× [n′] and [n]∗ [n′] are isomorphic
in Set. My favorite bijection between those sets is the following:

φn,n′ : [n]× [n′] → [nn′]
(i, j) 7→ j + (i− 1)n′

For example, the following illustrates φ3,4 : [3]× [4]→ [12]:

(1, 1) (1, 2) (1, 3) (1, 4) 1 2 3 4

(2, 1) (2, 2) (2, 3) (2, 4)
φ3,4−→ 5 6 7 8

(3, 1) (3, 2) (3, 3) (3, 4) 9 10 11 12

Now, we define ∗ on morphisms by setting

f ∗ g = φn,n′ ◦ (f × g) ◦ φ−1m,m′ (4.8)
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whenever f : [m] → [n] and g : [m′] → [n′]. For example, let f : [3] → [2] and
g : [3]→ [3] be the functions defined above. The map f ∗ g : [3] ∗ [3]→ [2] ∗ [3]
can be found using the following maps between arrays:

(1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)
(3, 1) (3, 2) (3, 3)

f×g−→ (1, 1) (1, 2) (1, 3)
(2, 1) (2, 2) (2, 3)

φ−1
3,3 ↑ φ2,3 ↓
1 2 3
4 5 6
7 8 9

f∗g−→ 1 2 3
4 5 6

For instance, f ∗ g(7) = 5 since 7
φ−1
3,3−→ (3, 1)

f×g−→ (2, 2)
φ2,3−→ 5.

Exercise 4.25. Use (4.8) to show that ∗ satisfies (B1) and (B2).

Exercise 4.26. Given arbitrary functions f : [m] → [n] and g : [m′] → [n′],
find an explicit formula for f ∗ g(k) for any 1 ≤ k ≤ mm′.
[Hint: Write k = j + (i− 1)m′ with 1 ≤ j ≤ m′ and 1 ≤ i ≤ m.]

Exercise 4.27. Prove that (Setn, ∗, [1]) is a strict monoidal category.

Exercise 4.28. Show that f ∗g is a bijection whenever f and g are. Conclude
that (Bijn, ∗, [1]) is also a strict monoidal category.

4.5 Strict monoidal functors

In Chapter 3 we saw how functors give us a precise way to compare vertical
stacking in diagram categories with operations such as matrix multiplication
and function composition. In order to simultaneously compare vertical horizon-
tal stacking of diagram categories with the multiple operations in other strict
monoidal categories, our functors need to satisfy some additional properties to
be sure that monoidal structure is preserved.

Definition 4.29. Given two strict monoidal categories (C,�,1) and (D,�,1),
a strict monoidal functor from (C,�,1) to (D,�,1) is a functor F : C → D
that satisfies the following properties:

(MF1) F (1) = 1.

(MF2) F (f � g) = F (f)� F (g) for all morphisms f and g in C.

Example 4.30. Consider the functor F : S →Mat that maps each permuta-
tion diagram to its corresponding permutation matrix (see Example 3.4). We
will show F is a strict monoidal functor from (S,⊗, 0) to (Mat,⊕, 0). Since
F (0) = 0, it follows that (MF1) holds. You are encouraged to fill in the details
in the following verification of (MF2):

F (D ⊗D′) =

(
F (D) 0

0 F (D′)

)
= F (D)⊕ F (D′).
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Exercise 4.31. Show that the functor F : S → Setn that maps each permuta-
tion diagram to its corresponding set permutation is a strict monoidal functor
from (S,⊗, 0) to (Setn,],1).

Exercise 4.32. Explain how to define a bifunctor ] on Reln so that functor
F : P → Reln from Exercise 3.15 is a strict monoidal functor from (P,⊗, 0)
to (Reln,],1). Of course, you need to determine the unit object too.

Exercise 4.33. Prove that F ◦G is a strict monoidal functor whenever F and
G are.

Isomorphic strict monoidal categories

If there is a strict monoidal functor from (C,�,1) to (D,�,1) which is also
an isomorphism of categories, then we say that (C,�,1) and (D,�,1) are
isomorphic, or that C and D are isomorphic as strict monoidal categories if the
monoidal structure is understood from the context.

Example 4.34. The strict monoidal categories (PMat,⊕, 0) and (S,⊗, 0) are
isomorphic. Indeed, arguing as in Example 4.30, the functor F : S → PMat
which maps a permutation diagram to its corresponding permutation matrix
is a strict monoidal functor. Moreover, F is an isomorphism of categories (see
Exercise 3.19).

Exercise 4.35. Prove that (Bijn,],1) is isomorphic to (S,⊗, 0). Use Ex-
ample 4.34 along with Exercises 3.16 and 4.33 to prove that (Bijn,],1) and
(PMat,⊕, 0) are isomorphic.

Exercise 4.36. Show NC and T Lev are isomorphic as strict monoidal cate-
gories.

Exercise 4.37. Prove that (PMat,⊗, 1) is isomorphic to (Bijn, ∗, [1]).

Exercise 4.38. Give a diagrammatic description of a bifunctor � on S such
that (S,�, 1) is a strict monoidal category which is isomorphic to (PMat,⊗, 1)
and (Bijn, ∗, [1]).





Chapter 5

Presentations of categories by
generators and relations

5.1 Motivating example: T L

In this chapter we will describe various diagram categories D by so-called “gen-
erators and relations”. The “generators” in such a description are diagrams
such that all other diagrams in D can be built by stacking generators and
identity morphisms, both vertically and horizontally. For example, in T L the
standard generators are the cup and the cap:

It is not difficult to see that every other Temperley-Lieb diagram can be
constructed by stacking identity diagrams, cups, and caps. In fact, every
Temperley-Lieb diagram can be decomposed as a vertical stack of levels, where
each level consists of at most one cup/cap along with some vertical strands
(identity morphisms). For example, the diagram

can be decomposed as follows:

(5.1)

39
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Of course, there is not a unique way to decompose a diagram. For example,
the diagram above could have also been decomposed as follows:

(5.2)

The “relations” correspond to the “diagrammatic moves” necessary to verify
two different decompositions correspond to the same diagram. For example,
the decompositions in (5.1) and (5.2) are related by a sliding relation:

Sliding relations hold in every stitch monoidal category since

(A⊗ 1n′) ◦ (1m ⊗B) = A⊗B = (1n ⊗B) ◦ (A⊗ 1m′)

by (C2) and (B2). There are, however, different decompositions of the same
diagram which cannot be related by only sliding relations. For example, here
is another, more complicated way to decompose that same diagram:

(5.3)

This last decomposition probably wouldn’t be your first choice when decom-
posing the diagram, but it could arise when stacking two other diagrams which
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are already decomposed:

The fundamental relations in T L that will allow us to move between the de-
compositions (5.3) and (5.1) are the straightening relations:

and the loop relation:

The following shows how to get from (5.3) to (5.1).

The first equality uses a sliding relation, the second a loop relation, the third a
straightening relation. The last equality comes from a relation that says that
you can remove any level which is corresponds to an identity morphism, which
follows from (C2).
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Exercise 5.1. Consider the following equation that holds in T L:

Construct decompositions of the two diagrams on the left side of the equality,
stack them accordingly, and use the relations described above to simplify the
stack until it looks like the following decomposition of the diagram on the right:

Each step in your simplification should modify at most two levels of the de-
composition.

While it’s easy to see that the relations described above hold in T L, what’s
not obvious is that these relations are enough to completely determine whether
or not two diagrams are equal in T L. To be a bit more precise, two decompo-
sitions of Temperley-Lieb diagrams correspond to the same morphism in T L if
and only if one can be transformed to the other by a sequence of straightening
relations, loop relations, and other relations that hold in all strict monoidal
categories (such as sliding relations). We will prove this fact in §5.4 (see The-
orem 5.26). Afterwards, we will consider generators and relations for other
diagram categories. First, in §5.2 and §5.3 we will develop the theory of free
strict monoidal categories given by generators and relations. This will allow us
to prove (and state precisely) theorems which describe diagram categories by
generators and relations. Essentially, we will develop the tools to construct a
strict monoidal category C in which morphisms are related only by our candi-
dates for the relations that describe a diagram category D. Then we can prove
D is given by our candidates for generators and relations by showing that C
and D are isomorphic as strict monoidal categories.

5.2 Free monoidal categories

Quivers

A quiver, Q, consists of a set of vertices V , a set of arrows A, and a function
A → V × V which assigns each arrow an initial vertex and a terminal vertex.
All quivers in these notes will have V = Z≥0. With this in mind, our quivers
are collections of arrows between nonnegative integers. For example, we write

Q = {a : 0→ 1, b : 1→ 0, c : 0→ 2, d : 2→ 0}
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for the quiver Q with A = {a, b, c, d} and

A → Z≥0 × Z≥0
a 7→ (0, 1)
b 7→ (1, 0)
c 7→ (0, 2)
d 7→ (2, 0).

Quivers also go by the name of directed graphs and have applications to mul-
tiple areas of mathematics. For us, they are merely a nice setting to discuss
morphism-like things (arrows) which do not necessarily belong to a category.
In fact, arrows in our quivers should be viewed merely as formal symbols (as
opposed to diagrams, matrices, functions, etc.). What is a : 0 → 1? It’s an
arrow in a quiver. What’s a quiver? It’s a collection of arrows.

Formal combinations of arrows

Given a quiver Q, we define a sequence of quivers Q0, Q1, Q2, . . . inductively
as follows. First, let Q0 denote the quiver which contains all the arrows in Q
as well as an arrow 1n : n→ n for each n ∈ Z≥0. Now, for each i ∈ Z≥0 we let
Qi+1 denote the quiver obtained from Qi by adding new arrows in one of the
following two ways:
(1) Whenever a : m→ n and b : l→ m are arrows in Qi, at least one of which
is not in Qi−1, we add a new arrow a ◦ b : l→ n to Qi+1.
(2) Whenever a : m → n and a′ : m′ → n′ are arrows in Qi, at least one of
which is not in Qi−1, we add a new arrow a� a′ : m+m′ → n+ n′ to Qi+1.

For example, suppose Q consists of a single arrow a : 0 → 1. Then Q0

consists of the following arrows:

a : 0→ 1, 10 : 0→ 0, 11 : 1→ 1, 12 : 2→ 2, . . .

Q1 consists of all the arrows above along with the following arrows:

a ◦ 10 : 0→ 1, 11 ◦ a : 0→ 1, 1n ◦ 1n : n→ n (n ∈ Z≥0),

a�a : 0→ 2, a�1n : n→ n+1, 1n�a : n→ n+1, 1m�1n : m+n→ m+n.

Note that the arrows listed above are all distinct. For example, a and a ◦ 10
are different arrows in Q1. We’ll get to simplifying these expressions soon. For
now, we are only formally applying the operations ◦ and �, whence the quivers
Qi grow quickly. For instance, even if we restrict our attention to diagrams of
type 0→ 0, there are 11 distinct arrows in Q2:

10, 10 ◦ 10, 10 � 10,
10 ◦ (10 ◦ 10), (10 ◦ 10) ◦ 10, 10 � (10 ◦ 10), (10 � 10) ◦ 10,
10 ◦ (10 � 10), (10 ◦ 10)� 10, 10 � (10 � 10), (10 � 10)� 10

Exercise 5.2. List all the arrows in Q2 with Q = {a : 0→ 1}.
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Exercise 5.3. List all the arrows in Q1 when Q = {s : 2→ 2}.

Exercise 5.4. List all the arrows in Q1 when Q consists of the two arrows
c : 0→ 2 and d : 2→ 0.

We will call an arrow in a quiver Qi a formal combination of arrows in Q.
We let Q∗ denote the quiver of all formal combinations of arrows in Q. In
other words, Q∗ =

⋃
iQi. For example, the following is a formal combination

of arrows in Q = {a : 0→ 1}:

((11 ◦ a)� (14 � 10)) ◦ ((a� a)� 13) ◦ ((a� 11)� a) (5.4)

Exercise 5.5. Let b denote the arrow in (5.4). Find m,n ∈ Z≥0 such that
b : m→ n. Find the smallest i such that b ∈ Qi.

Exercise 5.6. Explain why the expression (c� c) ◦ (c� (12� d)) is not a valid
formal combination of the arrows c : 0→ 2 and d : 2→ 0.

An equivalence relation on arrows

We now introduce an equivalence relation on formal combinations of arrows
which will allow us to simplify expressions. See Appendix A for the definition
of an equivalence relation. Given a quiver Q, we let ∼ denote the weakest
equivalence relation on Q∗ such that the following hold for all l, l′,m,m′, n, n′ ∈
Z≥0:

if a ∼ b and c ∼ d then a ◦ c ∼ b ◦ d
for all a, b : m→ n and c, d : l→ m,

(5.5)

if a ∼ a′ and b ∼ b′ then a� b ∼ a′ � b′ for all arrows a, a′, b, b′, (5.6)

a ◦ 1m ∼ a ∼ 1n ◦ a for all a : m→ n, (5.7)

(a ◦ b) ◦ c ∼ a ◦ (b ◦ c) for all a : m→ n, b : l→ m, c : k → l, (5.8)

1n � 1n′ ∼ 1n+n′ , (5.9)

(a� a′) ◦ (b� b′) ∼ (a ◦ b)� (a′ ◦ b′)
for all a : m→ n, a′ : m′ → n′, b : l→ m, b′ : l′ → m′,

(5.10)

a� 10 ∼ a ∼ 10 � a for all arrows a, (5.11)

(a� b)� c ∼ a� (b� c) for all arrows a, b, c. (5.12)

The quotient Q∗/∼ is another quiver. Given an arrow a : m → n Q∗, we
will abuse notation in the standard way by also writing a : m → n for the
corresponding equivalence class in Q∗/∼. Note, however, that a = b in Q∗/∼
if and only if a ∼ b in Q∗.

For example, if Q = {a : 0 → 1} then the arrows in Q1 which are distinct
when viewed as arrows in Q∗/∼ are

a : 0→ 1, a� a : 0→ 2, 1n : n→ n (n ∈ Z≥0),

a� 1n : n→ n+ 1 (n ∈ Z>0), 1n � a : n→ n+ 1 (n ∈ Z>0).
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Exercise 5.7. Suppose Q = {a : 0 → 1}. Which of the arrows in Q2 are
distinct when viewed as arrows in Q∗/∼ ?

Exercise 5.8. Suppose Q = {s : 2 → 2} as in Exercise 5.3. Which of the
arrows in Q1 are distinct when viewed as arrows in Q∗/∼ ?

Exercise 5.9. Suppose Q = {c : 0 → 2, d : 2 → 0} as in Exercise 5.4. Which
of the arrows in Q1 are distinct when viewed as arrows in Q∗/∼ ?

Free monoidal categories generated by one object

The equivalences (5.5)–(5.12) are precisely the requirements necessary for the
formal operations ◦ and � on arrows in a quiver to prescribe a strict monoidal
category. More precisely, we have the following:

Definition 5.10. Given a quiver Q consisting of arrows between nonnegative
integers, the free monoidal category generated by a single object and the arrows
in Q is the strict monoidal category (F(Q),�, 10) where:

• F(Q) is the category with ObF(Q) = Z≥0 and morphisms

HomF(Q)(m,n) = {arrows in Q∗/∼ of the form m→ n}.

The composition map in F(Q) is given by

HomF(Q)(m,n)×HomF(Q)(l,m) → HomF(Q)(l, n)
(a, b) 7→ a ◦ b (5.13)

• � is a bifunctor on F(Q) defined on objects by n � n′ = n + n′ and on
morphisms by

HomF(Q)(m,n)×HomF(Q)(m
′, n′) → HomF(Q)(m+m′, n+ n′)
(a, b) 7→ a� b

(5.14)

Note that (5.5) and (5.6) imply that the maps (5.13) and (5.14) are well-
defined. It follows from (5.7) and (5.8) that F(Q) satisfies (C2) and (C3)
respectively. The reader is encouraged to verify that F(Q) also satisfies (C1).
Hence F(Q) is indeed a category. To see that � defines a bifunctor on F(Q),
note that (B1) and (B2) follow from (5.9) and (5.10) respectively. Finally, (M1)
and (M2) follow from (5.11) and (5.12), whence (F(Q),�, 10) is indeed a strict
monoidal category.

Exercise 5.11. Suppose x : 0 → 0 and y : 0 → 0 are arrows in a quiver Q.
Use (5.7), (5.10), and (5.11) to prove that the following hold in F(Q):

x� y = x ◦ y = y � x = y ◦ x.
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Exercise 5.12. Let Q denote a quiver. Prove that every non-identity mor-
phism in F(Q) can be written as a ◦-product of finitely many morphisms of
the form 1m � a� 1n with a ∈ Q. Hints: Start with an arbitrary formal com-
bination of arrows in Q and induct on the number of arrows from Q in the
expression. Use the property a � b = (a � 1n) ◦ (1m � b) which follows from
(5.7) and (5.10).

The term free in Definition 5.10 alludes to the fact that there are no re-
lationships among arrows in F(Q) other than the relationships that hold in
every strict monoidal category. As a consequence, we have the following:

Proposition 5.13. (Universal property of free monoidal categories)
Suppose Q is a quiver of arrows aλ : mλ → nλ where each mλ, nλ ∈ Z≥0 and
λ ranges over some indexing set Λ. Given a strict monoidal category (C,�,1),
an object x ∈ Ob C, and a morphism fλ : x�mλ → x�nλ in C for each λ ∈ Λ;
there exists a unique strict monoidal functor G : F(Q)→ C such that G(1) = x
and G(aλ) = fλ for each λ ∈ Λ.

Proof. I should probably write this proof. For now, let’s call it an exercise.

Example 5.14. Let Q be the quiver with two arrows c : 0→ 2 and d : 2→ 0
and write F = F(Q). Let C and D denote the unique Temperley-Lieb diagrams
of types 0 → 2 and 2 → 0 respectfully. Let G : F → T L be the unique strict
monoidal functor with G(1) = 1, G(c) = C, and G(d) = D, as prescribed by
the universal property of F . Then G maps (11 � c � 12) ◦ (d � c � 11 � d) to
the following diagram:

Since every Temperley-Lieb diagram can be built by stacking C’s, D’s, and
identity diagrams (see §5.1), it follows that the functor G is surjective on mor-
phisms. However, G is not injective on morphisms (see Exercise 5.15), hence
G is not an isomorphism.

Exercise 5.15. Let F and G be as in Example 5.14. Show there exists a
functor H : F → P such that H((d � 11) ◦ (11 � c)) 6= H(11). Why does
that inequality imply that (d � 11) ◦ (11 � c) 6= 11 in F? Now, show that
G((d�11)◦(11�c)) = G(11) and conclude that G is not injective on morphisms.

Exercise 5.16. Set Q = {s : 2 → 2} and let G : F(Q) → S be the unique
strict monoidal functor with G(1) = 1 and
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Find a morphism a in F(Q) such that

Is G surjective and/or injective on morphisms? Are there any other strict
monoidal functors H : F(Q)→ S with H(1) = 1?

Exercise 5.17. Let Q be the quiver with five arrows

a : 0→ 1, b : 1→ 0, m : 2→ 1, w : 1→ 2, and s : 2→ 2.

Let G : F(Q)→ P be the unique strict monoidal functor with G(1) = 1 and

Is G surjective on morphisms? Is G injective on morphisms?

Exercise 5.18. With Exercise 5.17 in mind, find a quiver Q with four arrows
and a strict monoidal functor G : F(Q)→ NC that is surjective on morphisms.

5.3 Quotients of categories by relations

Congruence relations and quotient categories

Given a category C, a congruence relation on C is an equivalence relation ≈ on
the set of all morphisms in C such that

f ◦ g ≈ f ′ ◦ g′ whenever f ≈ f ′ and g ≈ g′. (5.15)

The corresponding quotient category C/≈ is defined by setting Ob(C/≈) = Ob C
and HomC/≈(m,n) = HomC(m,n)/≈ for all m,n ∈ Ob C/≈. It follows from
(5.15) that the composition map in C induces a well-defined composition in
C/≈. A monoidal congruence relation on a strict monoidal category (C,�,1)
is a congruence relation ≈ on C such that

f � g ≈ f ′ � g′ whenever f ≈ f ′ and g ≈ g′. (5.16)

In this case, the quotient category C/ ≈ inherits the structure of a strict
monoidal category from C.

Exercise 5.19. The goal of this exercise is to prove the claims above concern-
ing quotient categories. Assume ≈ is a congruence relation on a category C.
For each morphism f in C, write [f ] = {g : g ≈ f} for the equivalence class
containing f . Prove the following:
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1. The composition map on C/≈ defined by setting [f ] ◦ [g] = [f ◦ g] is
well-defined.

2. The definition of C/≈ satisfies (C1), (C2), and (C3).

3. If ≈ is monoidal, then setting [f ]� [g] = [f � g] prescribes a well-defined
bifunctor on C/≈. Moreover, (C/≈,�,1) satisfies (M1) and (M2).

Exercise 5.20. Given permutation diagrams B and D, write B ≈ D if and
only if (−1)B = (−1)D (see (3.1)). Prove that ≈ is a monoidal congruence
relation on (S,⊗, 0). Describe the quotient category S/≈.

Given a congruence relation ≈ on a category C, there is an associated quo-
tient functor Π : C → C/≈ which is the identity map on objects and maps each
morphism to its equivalence class. If ≈ is a monoidal congruence relation, then
Π is a strict monoidal functor. The following proposition is the most important
property of quotient categories, and will be useful in subsequent sections.

Proposition 5.21. (Universal property of quotient categories) Suppose
C and D are categories, ≈ is a congruence relation on C, and F : C → D is
a functor. If F (f) = F (g) in D whenever f ≈ g in C, then there exists a

unique functor F̃ : C/≈→ D such that F = F̃ ◦ Π. Moreover, if F is a strict

monoidal functor and ≈ is a monoidal congruence relation, then F̃ is also a
strict monoidal functor.

Proof. Define F̃ on objects by setting F̃ (n) = F (n). To defined F̃ on mor-
phisms, note that each morphism in C/≈ is of the form [f ] = {g : g ≈ f} for

some f in C. Set F̃ ([f ]) = F (f). To see that F̃ is well-defined on morphisms,
assume [f ] = [g] in C/≈. Then f ≈ g in C, whence F (f) = F (g) in D, as

desired. Next, we have F̃ ◦ Π(f) = F̃ ([f ]) = F (f), from which it follows that

F = F̃ ◦Π. The remainder of the proof is left as an exercise.

Exercise 5.22. Complete the proof of Proposition 5.21 by showing that F̃
is strict monoidal functor whenever F is strict monoidal functor and ≈ is a
monoidal congruence relation.

Generators and relations

The most important examples of quotient categories for our purposes are quo-
tients of the free monoidal categories F(Q) for various quivers Q. Such quo-
tients can be viewed as imposing additional relations on formal combinations of
arrows in Q that do not already follow from (5.5)–(5.12). To be more precise,
let R denote a set of relations among morphisms in F(Q), and let ≈ denote
the weakest congruence class on F(Q) such that the relations in R hold. We
will call the quotient category F(Q)/≈ the free monoidal category generated
by a single object and morphisms Q subject to the relations R.
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As a running example for the rest of this section, let E denote the free
monoidal category generated by a single object and a morphism ε : 0 → 0
subject to the relations

ε2 ≈ 10, ε� 1n ≈ 1n � ε (for all n ∈ Z≥0). (5.17)

Note that by Exercise 5.11 you can interpret ε2 as ε ◦ ε or ε � ε. We will
describe E in detail by the end of this section. To start, notice that since the
only generating morphism for E is an endomorphism, we have HomE(m,n) = ∅
unless m = n.

Given a morphism a ∈ HomF(Q)(m,n), it is customary to abuse notation
and also write a for the corresponding equivalence class in HomF(Q)/≈(m,n).
However, it is important to remember that a = b in F(Q)/≈ if and only if a ≈ b
in F(Q). Breaking this down even further, a = b in F(Q)/≈ exactly when b
can be obtained form a by a sequence of the relations among (5.5)–(5.12) and
the defining relations for ≈. For example, we have the following in E :

(15 � ε)� 16 = (ε� 15)� 16 = ε� (15 � 16) = ε� 111.

The equality on the left follows from one of the defining relations for E which
gives 15 � ε ≈ ε� 15 in F(Q). The other two equalities follow from (5.12) and
(5.9) respectively.

Exercise 5.23. For each n ∈ Z≥0, write εn = ε � 1n. Show that every
morphism in E is equal to either εn or 1n for some n ∈ Z≥0.

Showing equality of two morphisms in category defined by generators and
relations often amounts to some computation with the defining relations. On
the other hand, it can be a bit trickier to show that two morphisms in such
a category are not equal. For example, you might suspect that εn 6= 1n in E ;
but how do you prove it? In this case you could argue that two expressions
cannot be equal unless they have an equal parity of ε’s appearing (the defin-
ing relations can only add/remove ε’s in pairs). However, there is a different
approach involving functors which is preferable, especially when working with
more complicated systems of generators and relations. The method is to find
some functor E → D such that the images of εn and 1n are not equal in D. To
cook up such a functor, we often use the universal properties of free monoidal
categories (Proposition 5.13) and quotient categories (Proposition 5.21).

For example, let F denote the free monoidal category generated by a single
object and the arrow ε : 0 → 0 and consider the strict monoidal category
(Mat,⊗, 1). By Proposition 5.13 there exists a unique strict monoidal functor

G : F →Mat

with G(1) = 1 and G(ε) = −I1.∗ To see that G induces a functor from E to
Mat, we need to check that the defining relations for E are preserved by G:

∗Note that G maps all objects to 1. Indeed, G(n) = 1⊗n = 1 for all n ∈ Z≥0. Hence,
G maps EndE(n) to EndMat(1) = {λI1 : λ ∈ C}. In other words, each morphism in F is
assigned a complex number by G.
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Exercise 5.24. Show that G(ε2) = G(10) and G(ε � 1n) = G(1n � ε) for all
n ∈ Z≥0. Explain why if follows that G(a) = G(b) whenever a = b in E .

It follows from the previous exercise and Proposition 5.21 that there exists
a strict monoidal functor G̃ : E →Mat with G̃(1) = 1 and G̃(ε) = −I1.

Exercise 5.25. Show that G̃(εn) 6= G̃(1n) for all n ∈ Z≥0. Explain why it
follows that εn 6= 1n in E .

At this point we know everything about the category E . Indeed, we knew
from the start that the only morphisms in E were endomorphisms. It follows
from Exercises 5.23 and 5.25 that each object n admits exactly two endo-
morphisms: 1n and εn. Moreover, operations on these endomorphisms are
completely controlled by the following multiplication table:

1 ε
1 1 ε
ε ε 1

The multiplication table above can be view as a multiplication table for ei-
ther operation ◦ or � with any compatible subscripts on the 1’s and ε’s. For
instance, ε3 � ε4 = 17, 14 � ε2 = ε6, and ε4 ◦ ε4 = 14.

To close this section, notice that after the initial definition of the congruence
relation ≈ to define E , we replace “≈” with “=” in all computations with the
understanding that “=” in E amounts to “≈” in F(Q). In the upcoming section
we will go one step further by removing the notation “≈” even in the definition
of a category given by generators and relations. For example, we allow ourselves
to define E as the the free monoidal category generated by a single object and
a morphism ε : 0→ 0 subject to the relations

ε2 = 10, ε� 1n = 1n � ε (for all n ∈ Z≥0).

Compare the slight modification in notation from (5.17).

5.4 A Presentation of T L

The goal of this section is to prove the following theorem:

Theorem 5.26. T L is isomorphic to the free monoidal category generated by
a single object and two morphisms c : 0→ 2, d : 2→ 0 subject to the relations:

(d� 11) ◦ (11 � c) = 11 = (11 � d) ◦ (c� 11), d ◦ c = 10. (5.18)

For the remainder of the section, let FT L denote the category given by
generators and relations as described in the previous theorem.
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Exercise 5.27. Use Example 5.14 and Proposition 5.21 to show that there
exists a strict monoidal functor F : FT L → T L with

Show that F is bijective on objects.

To prove Theorem 5.26 we must show that the functor F described above
is bijective on morphisms. It’s not hard to show subjectivity, but injectiv-
ity requires some care. Towards that end, we first describe a unique way to
decompose certain Temperley-Lieb diagrams.

A normal form for Temperley-Lieb diagrams

Write D
(k)
i = 1i−1 ⊗ F (d) ⊗ 1k−i+1. In other words, D

(k)
i is the following

Temperley-Lieb diagram of type k + 2→ k.

We can decompose any Temperley-Lieb diagram of type 2n→ 0 as a •-product

of D
(k)
i ’s. For example, if

then D = D
(0)
1 •D

(2)
2 •D

(4)
4 •D

(6)
5 •D

(8)
9 •D

(10)
10 . I general, such a decomposition

is not unique. For example, the diagram above can also be decomposed as

D = D
(0)
1 • D(2)

2 • D(4)
1 • D(6)

2 • D(8)
4 • D(10)

5 . However, it turns out that we

do get a unique decomposition if we require the subscripts on the D
(k)
i ’s to be

strictly increasing (as in the former decomposition).

Proposition 5.28. For each Temperley-Lieb diagram D : 2n→ 0 there exists
a unique sequence of integers 1 = i1 < i2 < · · · < in with each ik < 2k such
that

D = D
(0)
i1
•D(2)

i2
• · · · •D(2n−2)

in
.

Exercise 5.29. Prove Proposition 5.28. Be sure to prove the uniqueness part
of the proposition; it will be crucial later.

Calculations in FT L
Let c

(k)
i : k → k + 2 and d

(k)
i : k + 2 → k denote the following morphisms in

the category FT L:

c
(k)
i = 1i−1 � c� 1k−i+1, d

(k)
i = 1i−1 � d� 1k−i+1.
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In particular, note that F (d
(k)
i ) = D

(k)
i for all 1 ≤ i ≤ k + 1. Also, note that

by Exercise 5.12, every morphism in FT L is either an identity morphism or a

◦-product of finitely many c
(k)
i ’s and d

(k)
i ’s. As a consequence, we have

HomFT L(m,n) = ∅ unless m and n have the same parity. (5.19)

The following exercises will allow us to prove Theorem 5.26.

Exercise 5.30. Prove that the following hold in FT L:

d
(k)
i ◦ c

(k)
i = 1k (1 ≤ i ≤ k + 1)

d
(k)
i ◦ c

(k)
i+1 = 1k (1 ≤ i < k + 1)

d
(k)
i ◦ c

(k)
i−1 = 1k (1 < i ≤ k + 1)

d
(k)
i ◦ c

(k)
j = c

(k−2)
j−2 ◦ d(k−2)i (1 < i+ 1 < j ≤ k + 1)

d
(k)
i ◦ c

(k)
j = c

(k−2)
j ◦ d(k−2)i−2 (1 < j + 1 < i ≤ k + 1)

d
(k)
i ◦ d

(k+2)
j = d

(k)
j ◦ d

(k+2)
i+2 (1 ≤ j ≤ i ≤ k + 1)

c
(k)
i ◦ c

(k−2)
j = c

(k)
j+2 ◦ c

(k−2)
i (1 ≤ i ≤ j ≤ k − 1)

Exercise 5.31. Use the previous exercise to prove that every morphism in
HomFT L(2n, 0) can be written in the form

d
(0)
i1
◦ d(2)i2 ◦ · · · ◦ d

(2n−2)
in

with 1 = i1 < i2 < · · · < in.

Exercise 5.32. Find morphisms γn : 0 → 2n and δn : 2n → 0 in FT L such
that F (γn) = dn and F (δn) = en (see Exercise 1.19). Show that

(δn � 1n) ◦ (1n � γn) = 1n and (1n � δn) ◦ (γn � 1n) = 1n

in FT L. Hint: Write γn in terms of c
(k)
i ’s and δn in terms of d

(k)
i ’s. Then

induct on n using Exercise 5.30.

Exercise 5.33. (Compare with Exercise 1.19) Use the previous exercise to
prove the map HomFT L(m,n)→ HomFT L(m+n, 0) given by x 7→ δn◦(x�1n)
is a bijection with inverse y 7→ (y � 1n) ◦ (1m � γn).

Proof of Theorem 5.26

Let m1,m2 ∈ Z≥0. To prove Theorem 5.26 we must show that map

HomFT L(m1,m2)→ HomT L(m1,m2)

given by x 7→ F (x) is a bijection. Both Hom-sets are empty unless m1 and
m2 have the same parity (see (5.19)), so we may assume m1 + m2 = 2n for
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some n ∈ Z≥0. Consider the following square of maps where φ and ψ are the
bijections prescribed by Exercises 5.33 and 1.19 respectively:

HomFT L(m1,m2)
F−−−−→ HomT L(m1,m2)

φ

y ψ

y
HomFT L(2n, 0)

F−−−−→ HomT L(2n, 0).

The following computation shows that the square commutes:

F ◦ φ(x) = F (δn ◦ (x� 1n)) (Definition of φ)

= F (δn) • (F (x)⊗ 1n) (F is a strict monoidal functor)

= en • (F (x)⊗ 1n) (Definition of δn)

= ψ ◦ F (x) (Definition of ψ)

Thus we have F ◦ φ = ψ ◦F , or equivalently F = ψ−1 ◦F ◦ φ. Therefore, since
both ψ and φ are bijections, it suffices to prove F is bijective on morphisms of
the form 2n→ 0.

Exercise 5.34. Use Proposition 5.28 and Exercise 5.31 to prove that the map

HomFT L(2n, 0)→ HomT L(2n, 0)

given by x 7→ F (x) is a bijection for each n ∈ Z≥0. This completes the proof
of Theorem 5.26. 2

5.5 A Presentation of S

The standard generator for the category S is the cross:

Just as we can decompose any Temperley-Lieb diagram into cups and caps,
we can decompose any permutation diagram into crosses. For example, the
permutation diagram

admits the following decomposition:
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The fundamental relations for crosses are the following:

The relation above on the left is called the braid relation. The goal of this
section is to prove that S is generated by the cross subject to the two relations
given above. More precisely, we will prove the following:

Theorem 5.35. S is isomorphic to the free monoidal category generated by a
single object and one morphism s : 2→ 2 subject to the relations:

(s� 11) ◦ (11� s) ◦ (s� 11) = (11� s) ◦ (s� 11) ◦ (11� s), s ◦ s = 12. (5.20)

Let FS denote the category given by generators and relations as described
in the previous theorem.

Exercise 5.36. Use Exercise 5.16 and Proposition 5.21 to show that there
exists a strict monoidal functor F : FS → S with

Show that F is bijective on objects.

As in the Temperley-Lieb case, to prove Theorem 5.35 we must show that
F is bijective on morphisms.

A normal form for permutation diagrams

Given integers 1 ≤ i ≤ j ≤ n we define the permutation diagram X
(n)
i,j : n→ n

as follows. First set X
(n)
i,i = 1n for all i. Now, for i < j we set

The X
(n)
i,j ’s can be used to uniquely decompose permutation diagrams:

Proposition 5.37. For each permutation diagram D : n → n there exists a
unique sequence of integers j1, j2, . . . , jn−1 with i ≤ ji ≤ n for each i, such that

D = X
(n)
1,j1
•X(n)

2,j2
• · · · •X(n)

n−1,jn−1
.

Exercise 5.38. Prove Proposition 5.37. Hint: Show that D can be written in

the form D = X
(n)
1,j1
•(11⊗D′) for some permutation diagram D′ : n−1→ n−1.

Then induct on n.
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Calculations in FS
Let s

(n)
i : n→ n denote the following morphism in the category FS:

s
(n)
i = 1i−1 � s� 1n−i−1.

Note that by Exercise 5.12, every morphism in FS is either an identity mor-

phism or a ◦-product of finitely many s
(n)
i ’s. As a consequence, we have

HomFS(m,n) = ∅ unless m = n. (5.21)

Now, given integers 1 ≤ i ≤ j ≤ n we set

x
(n)
i,j =

{
1n, if i = j;

sj ◦ sj−1 ◦ · · · si+1 ◦ si if i < j ≤ n.

In particular, note that F (x
(n)
i,j ) = X

(n)
i,j for all 1 ≤ i ≤ j ≤ n.

The following analogues to Exercises 5.30 and 5.31 will allow us to prove
Theorem 5.35:

Exercise 5.39. Prove that the following hold in FS:

s
(n)
i ◦ s(n)i = 1n (1 ≤ i ≤ n− 1)

s
(n)
i ◦ s(n)i+1 ◦ s

(n)
i = s

(n)
i+1 ◦ s

(n)
i ◦ s(n)i+1 (1 ≤ i ≤ n− 2)

s
(n)
i ◦ s(n)j = s

(n)
j ◦ s(n)i (|i− j| > 1)

Exercise 5.40. Use the previous exercise to prove that every morphism in
EndFS(n) can be written in the form

x
(n)
1,j1
◦ x(n)2,j2

◦ · · · ◦ x(n)n−1,jn−1

for some integers j1, j2, . . . , jn−1 with i ≤ ji ≤ n for each i.

Proof of Theorem 5.35

To prove Theorem 5.35 we must show that map HomFS(m,n)→ HomS(m,n)
given by σ 7→ F (σ) is a bijection for all m,n ∈ Z≥0. Both Hom-sets are empty
unless m = n (see (5.21)), hence it suffices to show that map

EndFS(n)→ EndS(n) (5.22)

is a bijection. By Exercise 5.37, every morphism in EndS(n) is of the form

X
(n)
1,j1
• · · · •X(n)

n−1,jn−1
= F (x

(n)
1,j1
◦ · · · ◦ x(n)n−1,jn−1

).

It follows that (5.22) is surjective.

Exercise 5.41. Use Proposition 5.37 and Proposition 5.40 to prove that (5.22)
is injective. This completes the proof of Theorem 5.35. 2
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5.6 Problems: presentations of other diagram categories

Problem 5.42. (The Motzkin category) A partition diagram is called
Motzkin if it is non-crossing and each part consists of either one or two elements.
For instance, every Temperley-Lieb diagram is Motzkin. Here’s an example of
a Motzkin diagram which is not Temperley-Lieb:

It’s easy to check that Motzkin diagrams are closed under the operations • and
⊗. Hence, the collection of all Motzkin diagrams form a subcategory M of P,
and (M,⊗, 0) is a strict monoidal category. Prove theM is isomorphic to the
free monoidal category generated by a single object and three morphisms

b : 1→ 0, c : 0→ 2, d : 2→ 0,

subject to relations (5.18) along with

(b� 11) ◦ c = (11 � b) ◦ c, b ◦ (b� 11) ◦ c = 10.

Problem 5.43. (Presentation of B) Prove the B is isomorphic to the free
monoidal category generated by a single object and three morphisms

c : 0→ 2, d : 2→ 0, s : 2→ 2,

subject to relations (5.18), (5.20), and the following:

d ◦ s = d, (d� 11) ◦ (11 � s) = (11 � d) ◦ (s� 11). (5.23)

Problem 5.44. (Presentations of NC and T Lev) Prove the NC and T Lev
are both isomorphic to the free monoidal category generated by a single object
and four morphisms

a : 0→ 1, b : 1→ 0, m : 2→ 1, w : 1→ 2,

subject to the relations:

m ◦ (m� 11) = m ◦ (11 �m), m ◦ (11 � a) = 11 = m ◦ (a� 11),
(w � 11) ◦ w = (11 � w) ◦ w, (11 � b) ◦ w = 11 = (b� 11) ◦ w,

b ◦ a = 10, m ◦ w = 11,
(m� 11) ◦ (11 � w) = w ◦m, (11 �m) ◦ (w � 11) = w ◦m.

(5.24)

Problem 5.45. (Presentation of P) Prove the P is isomorphic to the free
monoidal category generated by a single object and five morphisms

a : 0→ 1, b : 1→ 0, m : 2→ 1, w : 1→ 2, s : 2→ 2,

subject to relations (5.20), (5.24), and the following:

s ◦ (11 � a) = a� 11, (11 �m) ◦ (s� 11) ◦ (11 � s) = s ◦ (m� 11),
(11 � b) ◦ s = b� 11, (11 � s) ◦ (s� 11) ◦ (11 � w) = (w � 11) ◦ s.



Appendix A

Equivalence relations

A relation R on a set X is an endomorphism R ∈ EndRel(X). Recall that this
means R ⊆ X ×X. A relation R on a set X is called reflexive if (x, x) ∈ R for
all x ∈ X. We call R symmetric if (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ X.
We call R transitive if (x, y), (y, z) ∈ R implies (x, z) ∈ R for all x, y, z ∈ X. A
reflexive, symmetric, transitive relation is called an equivalence relation.

Exercise A.1. Find 8 different relations R1, . . . , R8 on the set {1, 2, 3} which
agree with the following truth table:

R1 R2 R3 R4 R5 R6 R7 R8

reflexive T T T T F F F F
symmetric T T F F T T F F
transitive T F T F T F T F

57


