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1 Introduction

The look-and-say sequence was first introduced by John Conway. Let’s look at
a standard look and say sequence:

11 → 21 → 1211 → 111221 → 312211 → 13112211 → · · · (1.1)

The sequence above starts with the seed 11. It has two 1’s. To create a sub-
sequent term in the sequence, we simply ”say what we see”. As a result, the
next term in the sequence is 21. 21 has one 2 followed by one 1. Thus, the next
term is 1211. As we continue this pattern, we get one 1, one 2 and two 1’s. As
we continue, we see that the terms in the sequence above appear to be growing.
Conway estimated the ratio of the lengths of terms to approach.

1.303577269 . . .

We now refer to this number as Conway’s constant, which implies that each
subsequent term in the sequence (1.1) is approximately 30% longer than the
previous term. Conway’s constant is the largest real root of the following irre-
ducible polynomial:

λ71 − λ69 − 2λ68 − λ67 + 2λ66 + 2λ65 + λ64 − λ63 − λ62 − λ61 − λ60 − λ59 + 2λ58

+ 5λ57 + 3λ56 − 2λ55 − 10λ54 − 3λ53 − 2λ52 + 6λ51 + 6λ50 + λ49 + 9λ48 − 3λ47

− 7λ46 − 8λ45 − 8λ44 + 10λ43 + 6λ42 + 8λ41 − 5λ40 − 12λ39 + 7λ38 − 7λ37 + 7λ36

+ λ35 − 3λ34 + 10λ33 + λ32 − 6λ31 − 2λ30 − 10λ29 − 3λ28 + 2λ27 + 9λ26 − 3λ25

+ 14λ24 − 8λ23 − 7λ21 + 9λ20 + 3λ19 − 4λ18 − 10λ17 − 7λ16 + 12λ15 + 7λ14 + 2λ13

− 12λ12 − 4λ11 − 2λ10 + 5λ9 + λ7 − 7λ6 + 7λ5 − 4λ4 + 12λ3 − 6λ2 + 3λ− 6

This sequence is governed by the linear transformation of 92-dimensional vector
space, which further illustrates the complication mathematics behind the ”say
what you see” sequence. After the introduction of Conway’s standard look and
say sequence several variations of look and say sequence have been introduced.
(see e.g. [EBGSN+2, EBGSN+1], [OM], [Mor], [SS]).

In this paper we will explore a different non-standard look and say sequence,
which we call the n

√
2-binary look and say sequence. In this paper we fix the

number system to n
√
2 binary base.

In section 2 we introduce the n
√
2-binary number system and show how to

represent numbers in n
√
2-binary.

In section 3 we will the we will look into the structure of look and say
sequence with seed 0for some cases of n

√
2-Binary. More superficially when

binary n = 1j0k, 10k and n = 120k.
Likewise in section 4, We found out the lemma to find frequent elements

for n
√
2-Binary look and say sequence with all possible seeds in a case basis for

different cases of n. In the section we also looked at cases when n = 1, 2 and 3.
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2 n
√
2-Binary Number System

We know, the binary number consists of two digits; 1 and 0. In our primary and
secondary school, our understanding of binary numbers in confined to base 2.
However, there are different binary number systems. Grey code is one of such
examples.

Here, we will look at the family of one more binary number system. We call
it base n

√
2-binary number system. For convenience we will refer base 2 binary

numbers as binary and we write (m)2 for binary representation of m. Similarly,
we will write [m]n for n

√
2-binary representation of m where m ∈ R.

The decimal to n
√
2-binary conversion is similar to decimal to binary conver-

sion. Rather than 2 we have n
√
2 as our base. For example, when n = 2

12 = 1(
√
2)6 + 0(

√
2)5 + 1(

√
2)4 + 0(

√
2)3 + 0(

√
2)2 + 0(

√
2)1 + 0(

√
2)0

[12]2 = 1010000

let’s look at some more conversions:

Decimal Binary
√
2-Binary 3

√
2-Binary 4

√
2-Binary

0 0 0 0 0
1 1 1 1 1
2 10 100 1000 10000
3 11 101 1001 10001
4 100 10000 1000000 100000000
5 101 10001 1000001 100000001

From the conversions above we can see that n
√
2-binary representations are

obtained by inserting n− 1 0s between each bit in binary representation. This
enables us to represent any decimal numbers in n

√
2-binary number system using

binary number system.

2.1 Writing n
√
2-binary in exponent form.

From the section above, we see that n
√
2-binary representation of a number can

have many 0s in it. So, for our convenience we will write n
√
2-binary representa-

tions in exponent form. The exponent will determine the number of consecutive
0’s or 1’s in the n

√
2-binary/binary representation. For example 1302 would

represent 3 consecutive 1’s followed by 2 consecutive 0’s i.e 11100.

2.2 Writing 3, n− 1 and 2n− 1 in n
√
2-binary form

From section 2, we can represent any number in n
√
2 binary from its binary form.

For example let’s look at number 3.

(3)2 = 11

[3]n = 10n−11
(2.1)
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Further let’s look at how we can write n − 1 and 2n − 1 in binary system.
To subtract 1 from a number n2 (say 11000000), we flip all the bits after the
rightmost 1 bit, (we get 11111111). Finally, we flip the rightmost 1 bit also, (we
get 10111111) to get the answer. So in our case when

(n)2 = 1j0k

(n− 1)2 = 1j−101k
(2.2)

Now, (2n)2 is just multiplying the binary bit by 2 i.e increasing the power
of each 2 by 1. Therefore, When

(n)2 = 1j0k

(2n)2 = 1j0k+1

(2n− 1)2 = 1j−101k+1

(2.3)

Then, in n
√
2-binary we get

[n− 1]n = (10n−1)j−210n−100n−1(10n−1)k−11

= (10n−1)j−2102n−1(10n−1)k−11

[2n− 1]n = (10n−1)j−210n−100n−1(10n−1)k1

= (10n−1)j−2102n−1(10n−1)k1

(2.4)

From this general form we can convert any (n)2 to [n]n form for every j ≥ 2.
For example when j = 2

(n)2 = 120k

[n− 1]n = 102n−1(10n−1)k−11

[2n− 1]n = 102n−1(10n−1)k1

(2.5)

When j = 1,

(n)2 = 10k

(n− 1)2 = 1k

(2n)2 = 10k+1

(2n− 1)2 = 1k+1

[n− 1]n = (10n−1)k−11

[2n− 1]n = (10n−1)k1

(2.6)

3 n
√
2-Binary Look and Say Sequence with Seed

0

Using n
√
2-binary representations gives us a new way to say what we see when

generating a look and say sequences. For example, if we look at 1111 then we
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see four 1’s. Since the n
√
2-binary representation of four is 102n−1 we would say

102n−11. As in the standard case, repeatedly applying this say-what-you-see
operation will generate a look and say sequence.

Consider the look and say sequence starting with the seed 0 for n = 2 First,
we see one 0 so the next term is 10. From 10 we see one 1 and one 0 so the next
term is 1110. Now, looking at 1110 we see three 1’s followed by one 0; since [3]2
is 101, the next term will be 101110. Continuing on in this manner gives us the
following look and say sequence:

0 → 10 → 1110 → 101110 → 1110101110 → 1011101110101110 → · · · (3.1)

In the following sections we will look into the structure of look and say sequences
for some n

√
2-binary cases, where we fix n.

3.1 Case 1: when (n)2 = 10k

In this section we want to look at binary look and say sequence with base n
√
2

where we fix n = 2k.

Theorem 3.1. When (n)2 = 120k, the frequent elements that appear in look
and say sequence with seed 0 are e1 = 10, e2 = 130, e3 = 10n−1, e4 = 130n−1,
where e1 → e2, e2 → e3e2, e3 → e4e

k−2
3 e1, e4 → e3e4e

k−2
3 e1.

Proof. The first 2 terms of n
√
2-binary look and say sequence starting with seed

0 are e1 = 10 and e2 = 1110 regardless of the number system used.

0 → 10 → 1110 → · · ·

Using section 2, we have the following decay:
e2 = 1110 → 10n−11110 = e3e2,
e3 = 10n−1 → 11(10n−1)k−110 = 1110n−1(10n−1)k−210 = e4e

k−2
3 e1,

e4 = 130n−1 → 10n−111(10n−1)k−110 = 10n−11110n−1(10n−1)k−210 = e3e4e
k−2
3 e1.

3.1.1 Decay Graph

e1

e2

e3

e4

k − 2

k − 1

(3.2)
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In the graph above each arrow from ej to ei indicates an occurrence of ei in the
decay of ej . For example, since e4 decays into ek−1

3 e4e1, we have k − 1 arrows
from e4 to e3; one arrow from e4 to itself and one arrow from e4 to e1. In other
words, the number of arrows from ej to ei in the decay graph is equal to the
i, j-entry in the decay matrix. (3.1.2)

Now, we see e4 decays into e3 k−1 times and e3 decays into itself k−2 times.
Therefore, eventually the ratio of the elements in a term will be approximately
0 : 0 : 1 : 0.

3.1.2 Characteristic polynomials and growth rates

To estimate the growth rate of the sequence, we can encode the frequent elements
into a 4× 4 decay matrix. With k frequent elements, the decay matrix is the k
× k matrix whose i, j-entry is the number of times ei occurs in the decay of ej .
In other words, the jth column is the compound vector corresponding to the
decay of ej . It follows from theorem 3.1.

0 0 1 1
1 1 0 0
0 1 k − 2 k − 1
0 0 1 1


The characteristic polynomial of the 4× 4 matrix is

−λ2(−λ2 + kλ+ 2− k)

The corresponding maximal real eigenvalue

λ =
k +

√
k2 − 4k + 8

2

The ratio of the length of the terms of the Look and Say sequence approaches
the maximal real eigenvalue.

3.2 Case 2 : when (n)2 = 120k

3.2.1 Decomposition of frequent elements

Theorem 3.2. When (n)2 = 120k, the frequent elements that appear in look and
say sequence with seed 0 are e1 = 10 , e2 = 130, e3 = 10n−1, and e4 = 1302n−1,
where e1 → e2, e2 → e3e2, e3 → e4e

k−1
3 e1, and e4 → ek+1

3 e4e1.

Proof. Since we are starting with seed 0,
0 → 10 = e1
e1 = 10 → 1110 = 130 = e2
e2 = 130 → 10n−11110 = 10n−1130 = e3e2
e3 = 10n−1 → 11102n−1(10n−1)k−110 = 1302n−1(10n−1)k−110 = e4e

k−1
3 e1

e4 = 1302n−1 → 10n−111102n−1(10n−1)k10 = 10n−11302n−1(10n−1)k10 = ek+1
3 e4e1
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3.2.2 Decay Graph

e1

e2

e3

e4

k − 1

k + 1

(3.3)

Looking at the decay graph we see e4 decays into e3 k + 1 times and e3 decays
into itself k− 1 times. Therefore, eventually the ratio of the elements in a term
will be approximately 0 : 0 : 1 : 0.

3.2.3 Decay Matrix

Form Section 3.1.2, we know how to create a decay matrix. So, The decay
matrix in this case is: 

0 0 1 1
1 1 0 0
0 1 k − 1 k + 1
0 0 1 1


Using technology, the characteristic polynomial of this matrix is

λ4 − λ3 − 2λ2 − kλ3 + kλ2 + λ.

The ratio of length of the terms of the look and say sequence approach the
maximal real root of the characteristic polynomial of the decay matrix. Using
technology we get the following maximal real root for the given characteristic
polynomial:

λ =
α

3 3
√
2
−

3
√
2(−k2 + k − 7)

3α
+

k + 1

3

when,

α =
3

√
(2k3 − 3k2 + 3

√
3
√

−k4 + 2k3 − 15k2 + 14k − 49 + 15k − 7

3.3 Case 3: When (n)2 = 1j0k

3.3.1 Decomposition of frequent elements

Theorem 3.3. When (n)2 = 1j0k the frequent elements that appear in look and
say sequence with seed 0 are e1 = 10 , e2 = 130, e3 = 10n−1, e4 = 102n−1 and
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e5 = 130n−1, where e1 → e2, e2 → e3e2, e3 → e5e
j+k−4
3 e4e1, e4 → e5e

j+k−3
3 e4e1

and e5 → ej+k−3
3 e5e4e1.

Proof. Since we are starting with seed 0,

0 → 10 = e1

e1 = 10 → 1110 = 130 = e2

e2 = 130 → 10n−11110 = 10n−1130 = e3e2

e3 = 10n−1 → 11(10n−1)j−2102n−1(10n−1)k−110 = 130n−1(10n−1)j−3102n−1(10n−1)k−110

= e5e
j+k−4
3 e4e1

e4 = 102n−1 → 11(10n−1)j−3102n−1(10n−1)k10 = 130n−1102n−1(10n−1)k10

= e5e
j+k−3
3 e4e1

e5 = 130n−1 → 10n−111(10n−1)j−2102n−1(10n−1)k−110 = 10n−1130n−1(10n−1)j−3102n−1(10n−1)k−110

= ej+k−3
3 e5e4e1.

3.3.2 Decay Matrix

Form Section 3.1.2, we know how to create a decay matrix. The decay matrix
in this case is 

0 0 1 1 1
1 1 0 0 0
0 1 j + k − 4 j + k − 3 j + k − 3
0 0 1 1 1
0 0 1 1 1


Using technology, we get the following characteristic polynomial for the given

matrix:
jλ4 − jλ3 − λ5 − λ4 + 4λ3 − λ2 + kλ4 − kλ3

The ratio of length of the terms in this case will approach the maximal real root
of the given characteristic polynomial.

4 n
√
2-Binary Look and Say Sequence with all

possible seeds

In this section we establish a general pattern for all look-and-say sequences
where n is not fixed in n

√
2-binary base. Given any seed, the Cosmological

Lemma allows us to establish persistent elements in all look-and-say sequences.
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4.1 Results of Day One and Day Two

We refer to the terms as n-days-old if they appear after nth decay in the se-
quence. If we take 1y0z as a seed, it is zero days old and it’s decay appears in
form [y]n1[z]n0, which is now one day old.

Lemma 4.1. (Day One Lemma) No more than 3 consecutive 1’s will appear in
the n

√
2-binary look and say sequence starting from day one.

Proof. Consider seed 1y0z → [y]n1[z]n0. Suppose (y)2 = aj . . . a1a0 and (z)2 =
bk . . . b1b0, then

[y]n1[z]n0 = aj0
n−1 . . . a20

n−1a10
n−1a01bk0

n−1 . . . b20
n−1b10

n−1b00

Expressing y and z in n
√
2-binary number system does not include any consecu-

tive 1’s. Depending on the value of y, a0 can either be 1 or 0. On the other hand,
bk is digit 1. Therefore, the decay of 1y0z can contain at most 3 consecutive 1’s:

a01bk.

Since y ∈ {1, 2, 3}, we only need to consider the following representations of
y.

y [y]n

1 1
2 10n

3 10n−11

Lemma 4.2. (Day Two Lemma) The number of consecutive 0’s in a two day-
old string are limited to 1, n, and in± 1 for i ∈ N.

Proof. Consider a day old element 1y0z → [y]n1[z]n0. Suppose (z)2 = bk . . . b1b0.
By Day One Lemma we know that y ∈ {1, 2, 3}. When y = 1,

[y]n1[z]n0 = 11bk0
n−1 . . . b20

n−1b10
n−1b00.

When y = 2,

[y]n1[z]n0 = 10n1bk0
n−1 . . . b20

n−1b10
n−1b00.

When y = 3,

[y]n1[z]n0 = 10n−111bk0
n−1 . . . b20

n−1b10
n−1b00.

Suppose b0 = 1 in [y]n1[z]n0. Then we can present the string in form

[y]n1bk0
n−1 . . . b20

n−1b10
n−110.
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As a result, [z]n0 will run 0 and in− 1 number of 0’s for some i < k, depending
on b values. Meanwhile [y]n runs either n or n − 1 number of 0’s. Suppose
b0 = 0. Then the string will be in form

[y]n1bk0
n−1 . . . b20

n−1b10
n+1.

Therefore, [z]n0 can run in−1 and in+1 number of 0’s for some i < k, depending
on b values. As a result, starting day two, we limit the runs of 0’s to 1, n and
in± 1 for i ∈ N.

4.2 Cosmological Theorems

In this section, we consider cases where n > 1 for n
√
2-binary look and say

sequence.

Lemma 4.3. (Cosmological lemma) The decay of any one day element 1y0z

will have less than z consecutive 0’s whenever zn < 2z−1 and z > n.

Proof. 1y0z → [y]n1[z]n0. By Lemma 4.1 we know that the maximal run of 0’s
in [y]n is n.We assume that z > n in this proposition. Therefore, it suffices to
check where length in [z]n0 is less than [z]n.

Let l denote the length of the maximal run of 0’s in [z]n0. We will assume
that zn < 2z−1 and show that l < z. If

(z)2 = bk . . . b2b1b0

then
[z]n = bk0

n−1 . . . b20
n−1b10

n−1b0.

Since there can be maximum nk digits of 0 in [z]n, the maximum number of 0’s
in [z]n0 is nk + 1 and l ≤ nk + 1.

zn < 2z−1

log2 z
n < z − 1

log2 z
n + 1 < z

The smallest number you can write with k + 1 bits is n = 2k and the largest
number with k + 1 bits is n = 2k+1 − 1. Therefore, 2k ≤ z ≤ 2k+1 − 1.
We are concerned with the smallest number with k + 1 bits, since it is the
smallest number that has largest consecutive 0’s. Since 2k ≤ z ≤ 2k+1− 1, then
k ≤ log2 z. Therefore

nk ≤ n log2 z

nk ≤ log2 z
n

l ≤ nk + 1 ≤ log2 z
n + 1 ≤ z

Therefore
l ≤ z.
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The Cosmological Lemma allows us to determine finite number of seeds that
one needs to check to find all persistent elements in any n

√
2-binary look and say

sequence. The following Cosmological Theorems for n = 3 and n = 4 illustrate
under what conditions the theorems will give us frequent elements for any value
of n.

Theorem 4.4. (Cosmological Theorem for n=2) Terms of any 3
√
2-binary look

and say sequence are eventually compounds of the following 7 elements: e1 = 1
e2 = 10, e3 = 11, e4 = 102, e5 = 120, e6 = 130, e7 = 1303.

Proof. The zn < 2z−1 inequality holds true whenever z ≥ 6. Along with Day
One and Day Two Lemmas, this allows us to reduce the number of cases we
need to check for when
y ∈ {1, 2, 3}
z ∈ {0, 1, 2, 3, 4, 5, 6}
In total, there are 21 seeds that require checking. Using Python, we generate
the binary chemistry for 21 possible seeds, which returns the frequent elements
listed in the theorem.

Theorem 4.5. (Cosmological Theorem for n=3) Terms of any 3
√
2-binary look

and say sequence are eventually compounds of the following 15 elements: e1 = 1
e2 = 10, e3 = 11, e4 = 102, e5 = 120, e6 = 103, e7 = 1202, e8 = 130, e9 =
1302, e10 = 1204, e11 = 1205, e12 = 1304, e13 = 1305, e14 = 1207, e15 = 1307.

Proof. The zn < 2z−1 inequality holds true whenever z ≥ 12. Along with Day
One and Day Two Lemmas, this allows us to reduce the number of cases we
need to check for when
y ∈ {1, 2, 3}
z ∈ {0, 1, 2, 3, 4, 5, 7, 8, 10, 11}
In total, there are 30 seeds that require checking. Using Python, we generate the
binary chemistry for 30 possible seeds, which returns the 15 frequent elements
listed in the theorem.

Theorem 4.6. (Cosmological Theorem for n=4) Terms of any 4
√
2-binary look

and say sequence are eventually compounds of the following 12 elements: e1 = 1
e2 = 10, e3 = 11, e4 = 120, e5 = 103, e6 = 130, e7 = 104, e8 = 1203, e9 =
1303, e10 = 1306, e11 = 1309, e12 = 13011.

Proof. The zn < 2z−1 inequality holds true whenever z ≥ 18. Along with Day
One and Day Two Lemmas, this allows us to reduce the number of cases we
need to check for when
y ∈ {1, 2, 3}
z ∈ {0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17}
In total, there are 42 seeds that require checking. Using Python, we generate the
binary chemistry for 42 possible seeds, which returns the 12 frequent elements
listed in the theorem.
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