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1. Introduction
by Jonathan Comes

This paper is concerned with diagram categories related to the representation
theory of the orthogonal and special orthogonal groups, O(d) and SO(d) respec-
tively. The role of diagrams in the representation theory of these groups was initi-
ated by Brauer in [Bra]. In that paper, Brauer used certain diagrams to construct
algebras Bm(d) equipped with surjective algebra maps

Bn(d) → EndO(d)(V
⊗n) (1.1)

where V is the natural d-dimensional representation of O(d). These Brauer algebras
are said to be in Schur-Weyl duality with the orthogonal groups, and they serve as a
key tool in the study of representations of O(d). Brauer also described a variation of
his diagrams that form a basis for an SO(d)-analog of Bn(d), but the multiplication
rule for this algebra was not included. Instead in [Bra], Brauer writes “The rule
for multiplication. . . can also be formulated. It is, however, more complicated and
shall not be given here.”

More recently, the relationship between Brauer diagrams and the representation
theory of orthogonal groups1 has been studied through the viewpoint of monoidal
categories (see [LZ2]). In particular, one can use Brauer diagrams to construct the
so-called Brauer category B(d) which admits a full monoidal functor

B(d) → Rep(O(d)). (1.2)

This viewpoint is an extension of Brauer’s work in that the algebra maps (1.1)
appear as the maps on endomorphism algebras induced by (1.2). Furthermore,
in [LZ3] the authors explain how handle the SO(d) case by adding an additional
generator and a few new relations to the Brauer category, creating what they call
the enhanced Brauer category. This additional generator has the appearance of
a jellyfish, so following [Com] in this paper it will be called the jellyfish Brauer
category, denoted JB(d). This category is equipped with a monoidal functor

F : JB(d) → Rep(SO(d)). (1.3)

The main result of [LZ3] is that F induces an equivalence of monoidal categories.
In particular, F induces vector space isomorphisms on Hom-spaces.

Date: April 2023.
1In fact, the authors in [LZ1, LZ4] use Brauer diagrams to study the representation theory of
more than just orthogonal groups. They study the representation theory of orthosymplectic
supergroups.
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This paper is concerned with the jellyfish Brauer category in the special case
when d = 2. In this case, the functor (1.3) induces an isomorphism of vector spaces

JB0
2n

∼= HomSO(2)(V
2n,C) (1.4)

where JB0
2n denotes the appropriate space of linear combinations of jellyfish Brauer

diagrams (see §3) and V is the natural 2-dimensional representation of SO(2). It
is a straightforward exercise in representation theory to show

dimHomSO(2)(V
2n,C) =

(
2n

n

)
. (1.5)

The expression
(
2n
n

)
is closely related to a closed formula for the nth Catalan num-

ber (see §5.1). Moreover, the Catalan numbers count Temperley-Lieb diagrams,
which are special types of Brauer diagrams (see Proposition 5.1). This suggests the
existence of a diagram basis for JB0

2n consisting of certain jellyfish Temperley-Leib
diagrams. The main result of this paper is such a diagram basis (see Corollary 7.5).

2. Definition of Brauer Diagrams

Given m,n ∈ Z≥0, let [n] = {j : 1 ≤ j ≤ n}, [m]′ = {j′ : 1 ≤ j′ ≤ m}. A Brauer
diagram of type n → m will look like:

1 2 3 ... n

1 2 3 ... m

Which is a representation of a partition of [n]∪[m]′ into pairs obtained by putting
all n on the bottom and all m on the top, with strands connecting those nodes
that are paired with each other. Note that this means any path taken between
two endpoints is equal to any other path between those same endpoints. As a
consequence, we see that we can “pull tight” any strand in a diagram. This means
that any twists and deformities in a single strand can be smoothed out, so long as
the strand’s endpoints do not change. This can look something like this:

We can also use this method to locally deform Brauer diagrams in order to isolate
something happening in that spot. We define Bm

n to be the space of complex linear
combinations of Brauer diagrams of type n → m. The Brauer algebra Bn(d)
mentioned in the introduction is the vector space Bn

n .

2.1. Operations on Brauer Diagrams. One property of Brauer diagrams is
the capacity to both vertically and horizontally stack them. Stacking Brauer dia-
grams vertically gives composition in the Brauer category (and multiplication on
the Brauer algebra). For example, if
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D1 = and D2 =

then D1 ◦D2 =

From this we see the possibility of loops arising. In the Brauer category B(d)
a loop gives a factor of d. In this paper, d = 2, so that loops give a factor of 2.
Thus D1 ◦D2 = 2D1. Horizontal stacking gives the tensor product in the Brauer
category, which might look like:

⊗ =

Now that we have established all the features of Brauer diagrams, we will add
jellyfish to the picture.

3. Jellyfish and Jellyfish Brauer Diagrams

A jellyfish is a dot that can be added to any vertical strand on a Brauer diagram.
Included is an example jellyfish Brauer diagram:

When a jellyfish is positioned on a horizontal strand section (on top of a cap or
on the bottom of a cup), we define it to be equal to that jellyfish on the left side of
the cap or cup.

=

=
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When discussing the space of diagrams with jellyfish included, we will use the
notation JBm

n . The jellyfish Brauer category JB(2) is defined by requiring the
following three local relations:

= −

=−

=

4. Relationships in JB diagrams

Theorem 4.1. The following relations hold in JB diagrams

= −
(4.1)

= −
(4.2)

= 0
(4.3)

= −
(4.4)
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=−
(4.5)

= +
(4.6)

= − − (4.7)

=− − + (4.8)

Proof. Relationship (4.1) is derived by using two of our definitions (dots passing
through edge crossings, and crossed jellyfish being negated), and making an arbi-
trary decision. By moving our jellyfish leftward and down through the crossing, we
have the following progression:

=− ⇒ =− ⇒ =−
Thus we see that moving a jellyfish across a cap negates the diagram. This same
logic also applies if we reflect our diagrams, giving us Relationship (4.2).

These relationships have immediate consequences for a jellyfish on a twisted
loop, where we can choose to move through the edge crossing or undo the twisting
first.

= =−

=− =

The above shows that a jellyfish on a closed loop will equal the same value as
its negative, which is only true if it is equivalent to 0, which gives us (4.3).

We can define further relations by using our definition of two adjacent jellyfish
on vertical connections instead of horizontally aligned connections. As we are only
concerned about the connection of our edges, we have the equations below:
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= = −

Thus be rearranging our terms, we have (4.4).
We can repeat the process, but on a singular line to instead have Relationship

(4.5) below.

= = − =−

We can then use these relations and composition to make a second expansion of
an edge crossing

= −

As our definition of composition is to stick diagrams together vertically, the
effect of the diagrams above is to add a dot on the top left and bottom right of
each diagram in Relationship (4.4):

= −

Upon this, we can use (4.5), (4.1), (4.2) and the definition of passing through
edge crossings to have (4.6).

We can then apply these relationships locally. More specifically, as we are only
concerned about the edges of our edge connections, we can ’stretch out’ the con-
nections, and thus consider a diagram to be equal to multiple diagrams composed
together. Thus we can focus in on a local area of a diagram. For instance, applying
(4.6) on our definition of adjacent jellyfish, then sliding dots as necessary, we have
(4.7)

= − −
And upon (4.7), we can compose to add a dot on the first input (the leftmost

edge) on each diagram to have the diagram below
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= − −
Which can be simplified with (4.5) and reorganized into the desired relationship

below, which is equivalent to (4.8)

=− − +

□

These relationships can then be used to give further insight into JB diagrams.
In particular (4.5) shows us that we only need consider diagrams where there are
either 0 or 1 dot on each line. We will use this assumption for the rest of this paper
without further reference.

5. Jellyfish-Temperly-Lieb

5.1. Catalan Numbers. The Catalan sequence is given by the following recursion
relation:

Cn =

n∑
k=1

Ck−1Cn−k (5.1)

where n ≥ 1, and C0 = 1. These numbers are equivalently given by

Cn =
1

n+ 1

(
2n
n

)
. (5.2)

The Catalan sequence serves as a good starting point for counting the number
of linearly independent jellyfish Brauer diagrams. We will first consider the un-
dotted Temperley-Lieb (TL) diagrams, a subset of Brauer diagrams that contain
no crossing strands.

Proposition 5.1. The number of TL diagrams of type 2n → 0 is Cn.

Proof. We will prove this by induction.
Base Case: Let n = 0. There is only one diagram with 0 strands, namely the

empty diagram. Thus, the number of TL diagrams of type 0 → 0 is 1 = C0.
Induction Step: Assume that for any m < n, there are Cm possible TL diagrams

of type 2m → 0. We will show that there are Cn possible diagrams of type 2n → 0
as well. First, we number the 2n ends of the n strands on the diagram from left to
right. We will determine the second endpoint of the strand connected to endpoint
1. There are 2n− 1 other endpoints. Notice, however, that to avoid any crossings,
this strand must enclose an even number of endpoints. In other words, endpoint 1
can only connect to an even-numbered endpoint. This limits us to n ways to draw
our first strand. So, we will arbitrarily draw the strand with endpoints 1 and 2k,
where k ∈ N such that k ≤ n.
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1 2 3 2k − 1 2k 2n− 1 2n

Now, the remaining endpoints are split into two sections. To avoid crossings,
these sections cannot be connected by any strands and can therefore be treated as
separate diagrams. Underneath the cap, there are 2k−2 endpoints, and to the right
of the cap, there are 2n− 2k endpoints. Thus we have one TL diagram with type
2k − 2 → 0, and one of type 2n − 2k → 0, whose respective counts are Ck−1 and
Cn−k by the inductive hypothesis. So, for this choice of k we can draw Ck−1Cn−k

diagrams. But there are n choices of k, so we must now sum over each one. This
gives a total count of

∑n
k=1 Ck−1Cn−k. But this is Cn by definition, so we see that

for any n, the Catalan sequence describes the count of possible TL diagrams of
type 2n → 0. □

5.2. Jellyfish-Temperly-Lieb Span Jelly-Brauer. Jellyfish Temperly Lieb di-
agrams (JTLs) are quite simply defined as JB diagrams without edge crossings. So
an image like below is a JTL.

Theorem 5.2. Each JB diagram can be expressed as a linear combination of JTL
diagrams

Proof. Given an arbitrary JB diagram, we can resolve any edge crossings by using
(4.4) or (4.6) to instead have a linear combination of JTL diagrams. □

6. Normal Diagrams

Definition 6.1. A normal Jellyfish Temperly Lieb diagram is one where there
exists no dots or there exists a strand such that only it and all strands above it are
dotted. For example, the following diagram is considered normal.

Proposition 6.2. A JTL diagram is normal if and only if neither an undotted
strand with a dot below it nor two dotted strands next to each other occur in the
diagram.

(6.1)
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Proof. If we have a normal JTL diagram, then by definition we do not have undotted
strands above dotted strands, nor do we have any any other dotted strands next to
each other. To show the converse, suppose we have a diagram that is not normal.
Then there exists a strand that is dotted with at least one undotted strand above
it or there exists two dots, neither of which is above the other. Thus if we have a
dotted strand with an undotted strand above it, we have the first diagram. In the
case where all dotted strands have a dotted strand above it, we either have at least
two dotted strands on the top of the diagram or we have at least two dotted strands
underneath another dotted strand, giving us two dots on the same level and thus
the second diagram. □

Proposition 6.3. The number of normal JTL diagrams of type 2n → 0 is
(
2n
n

)
.

Proof. We know that for a diagram of n strands that we have Cn different un-dotted
Temperly Lieb diagrams by Proposition 5.1. By Definition 6.1 we know that for any
diagram with n strands we have one normal diagram per strand, plus one normal
diagram for the undotted diagram. Thus as each undotted Temperly Lieb diagram
has n+1 normal variations of it, we find that the total number of normal diagrams
is then (n+ 1)Cn = n+1

n+1

(
2n
n

)
=

(
2n
n

)
. □

7. Normal Spanning

We now want to show that our previously defined normal diagrams span the set
of JTL diagrams of type 2n → 0. There are a few results that will help show this.

7.1. Eliminating Defect.

Definition 7.1. In a JTL diagram of type 2n → 0, we define the defect of a dot
to be the number of un-dotted strands that lie above it. The defect of a diagram,
then, is the sum of the defect of all dots in the diagram. We say a diagram is
without defect when its defect is 0.

Lemma 7.2. Any JTL diagram of type 2n → 0 can be written as a linear combi-
nation of diagrams without defect.

Proof. We will induct on the defect of the diagram.
Base case: The diagram has no defect and there is nothing to show.
Inductive step: Assume that any diagram with defect d < n can be rewritten

as a linear combination of diagrams without defect. Now consider an arbitrary
diagram with defect n. As long as n ̸= 0, there must exist some dot m with an
un-dotted arc above it and no arcs separating them:

32 4

1

Each box (labeled 1 through 4) is an unspecified diagram with arbitrary defect.
By (4.8), this can be rewritten as:
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32 4

1

32 4

1

32 4

1

− −

Notice that the defect of m has decreased by 1 in each new diagram. Also notice
that the number of un-dotted arcs above diagrams 1 through 4 either decreases
by 1 or is unchanged by this relation, so their respective defects either decrease
or are unchanged. Thus our diagram with defect n has been rewritten in terms of
diagrams with defect d < n. By our inductive assumption, each of these can in turn
be written as a linear combination of diagrams without defect, so we are done. □

7.2. Additions that Maintain Normalcy.

Lemma 7.3. If D1 is a normal diagram and D2 is a completely undotted diagram,
then D1 ⊗D2 and D2 ⊗D1 are both normal diagrams as well. Additionally, If D1

is a normal diagram, then the following is also normal:

D1

Proof. The tensoring operation, D1 ⊗D2 or D2 ⊗D1, does not produce either of
the local violations to the definition of normal in Proposition 6.2. The addition
of a dotted strand over the entirety of D1 also does not violate the conditions of
normalcy in Proposition 6.2. □

Theorem 7.4. The space JB0
2n is spanned by the set of all normal JTL diagrams

of type 2n → 0.

Proof. Let us induct on the value n, where n is the sum of the number of strands
and the number of dots. Our base case is when there are no dots on the diagram,
which of course results in a normal diagram. Suppose that we can express any
diagram with n < k as a linear combination of normal diagrams. Then let us
investigate diagrams with n = k strands and dots. By Lemma 7.2, we can write
our diagram as a linear combination of diagrams without defects. We can then
observe that since the defect of each diagram is 0, if there exists a dot in a diagram,
then every arc above it must also have a dot. Thus we can look at the topmost arcs
of the diagram, which gives us 3 cases:

Case 1: The leftmost or the rightmost top arc has no dot.

A B B A

Then we can express the diagram as a tensor product of B and the rest of the
diagram. Then we know that as B has value n ≤ k − 1 and by induction can be
expressed as a linear combination of normal diagrams, and by Lemma 7.3 the entire
diagram can be expressed as a linear combination of normal diagrams.
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Case 2: The leftmost and rightmost arcs are the same and have a dot.

A

Then as A has n = k − 2, it can be written as a linear combination of normal
diagrams by induction, and thus by Lemma 7.3 the entire diagram can be written
as a linear combination of normal diagrams.

Case 3: The leftmost and rightmost top arcs are distinct, different, and dotted.
Then we can use one of our identities (4.7)to express it as a linear combination:

A

A= A
-

A
-

In the first two diagrams there are 2 fewer dots, and thus by induction can be
expressed as a linear combination of normal diagrams. By case 2, the third diagram
can be can be written as a linear combination of normal diagrams, and thus any
JTL diagram can be expressed as a linear combination of normal diagrams.

□

Corollary 7.5. The set of normal JTL diagrams of type 2n → 0 form a basis for
the space JB0

2n

Proof. It falls from (1.4) and (1.5) that dimJB0
2n =

(
2n
n

)
. By Proposition 6.3 and

the previous theorem, normal JTL diagrams provide a spanning set of the right
size. Hence they are a basis for JB0

2n. □
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