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Abstract
Lazarus Immanuel Fuchs (1833-1902) was a German mathe-

matician and a leading theorist of differential equations. In an at-
tempt “to impose upon the inchoate world of differential equations
the conceptual order of the emerging theory of complex functions”
Fuchs created the ground work for what would become Poincaré’s
later theory of automorphic functions. From the 1870s to the turn
of the century, two strands in the study of differential equations
were brought together: applications of particular solutions (Legen-
dre’s equation, hypergeometric functions) and more abstract exis-
tence theorems. Following Michio Kuga’s (1928-1990) pedagogi-
cal treatment of this “intersection,” I present a theoretical approach
to the solutions of certain Fuchsian differential equations utilizing
Galois theory and monodromy groups. I consider the relation of
Kuga’s method [2, 3.2] to physically meaningful differential equa-
tions. Specifically, I discuss alternative solutions to problems aris-
ing in mathematical physics.

Mathematical Background
We work in the space D = C \ {0, 1}, i.e., the plane with
two points removed. While D is connected, it is not simply
connected. Notice there are (at least) two closed loops in
D which cannot be continuously deformed to a point—the
loop around 0 and the loop around 1. This intuitive fact is
captured by the algebraic structure of the fundamental group
π1(D). Indeed, π1(D) is the free group with two generators
[2, wk. 6]. Figure 1 demonstrates that π1(D) is non-abelian.

Figure 1: Cayley representation of π1(D), a non-commutative group

Because a loop around 0, around 1, back around 0 and then
back around 1 is not null homotopic, we have the “branch-
ing” Cayley representation of π1(D).

Fortunately, there is a unique space, which naturally corre-
sponds to D, where all closed loops null-homotopic. It is D̃,
the universal covering space of D.
Definition (universal covering space). Given a space X , the
universal covering space of X consists of a space X̃ and a
map f : X̃ → X such that X̃ is simply connected and for
each point x ∈ X there is an open neighborhood U of x in
X such that f−1(U) is a union of disjoint open sets each of
which is mapped homeomorphically onto U by f .

Because D̃ is simply connected we know [2, wk. 16]:

Theorem. Let D̃ z−→ D ⊂ C be the universal covering of D
with P and Q functions defined out of D̃ (where there exist
holomorphic functions P0 and Q0 on D such that P0◦z = P
and Q0 ◦ z = Q). Let p̃0 be a point of D̃ and α, β arbitrary
points in C. Then there is a unique holomorphic function
w(p̃) that satisfies both

d2w

dz2
(p̃) + P (z)

dw

dz
(p̃) + Q(z)w(p̃) = 0 (#)

and the initial conditions

w(p̃0) = α,
dw(p̃0)

dz
= β.

Monodromy Representation
Let V# denote the set of all solutions to #, without consid-
ering the initial conditions. Then V# is a two dimensional
vector space over C. Since D may not be simply connected,
solutions in V# may not be functions on D. In general, they
are only functions on D̃.

Denote the group of covering transformations Γ(D̃
z−→ D)

by Γ. The elements of this group are homeomorphisms from
D̃ unto itself [2, wk. 11]. Because D̃ is the universal cover-
ing, the group Γ is isomorphic to π1(D) [2, wk. 13].

Let K(D̃) be the field of meromorphic functions out of D̃
onto C. For each element γ ∈ Γ, we may define [2, wk. 15]
the field endomorphism γ∗ : K(D̃)→ K(D̃) by

γ∗(ψ) = ψ ◦ γ for all ψ ∈ K(D̃).

We must understand that γ∗ acts locally. For a ∈ C, let
Ua be punctured open disk about a. Consider the class of
curves γ which wind once around a in Ua. Then π1(Ua) is
the cyclic group generated by γ. For the universal covering
Ũa

z−→ Ua, π1(Ua) ∼= Γ(Ũa
z−→ Ua). Identify γ as a covering

transformation. It can be shown [2, wk. 18] that γ∗ acts:

γ∗(log(z − a)) = log(z − a) + 2πi

γ∗((z − a)α) = e2πiα(z − a)α

Suppose that w is a solution to #. Because w is meromor-
phic on D̃, we know w ∈ K(D̃). It can be shown [2, wk.
16] that γ∗w is also a solution to #. Whence it is known [2,
wk. 16] that γ∗ is a linear automorphism of V#.

LetM(γ) denote (γ−1)∗. The correspondenceM : γ 7→
M(γ) from the group Γ to the group of linear automor-
phisms of V# is a linear representation of Γ [2, wk. 16].
This representation is know as the monodromy representa-
tion of #. When we fix a basis [w1, w2] of V#,M(γ) can be
expressed as a 2× 2 matrix,

M(γ) =

(
a(γ) b(γ)
c(γ) d(γ)

)
.

This matrix can be determined by

(M(γ)w1,M(γ)w2) = (w1, w2)

(
a(γ) b(γ)
c(γ) d(γ)

)
.

The correspondence M : Γ 3 γ → M(γ) ∈ GL(2,C) is a
matrix representation of Γ. We’ll find M(γ) around 0 and 1.

Hypergeometric Differential Equations
The hypergeometric differential equation (with a, b, c ∈ R)

z(z − 1)
d2w

dz2
+ [(a + b− 1)z + c]

dw

dz
+ abw = 0 (F)

is a Fuchsian differential equation (see either [1, 21.1] or [2,
wk. 19]) as F can be put in the form # by choosing

P (z) =
c

z
+
a + b + 1− c

z − 1
,

Q(z) =
−ab
z

+
ab

z − 1
.

The local exponents of F (which we need) are found to be
0 1 ∞
0 0 a

1− c c− a− b b

Table 1: Indicial Exponents [4, 1.4]

“A very effective way to study a new technique is to do
some simple problems by hand in order to understand the
process, and compare results with a computer solution” [1].

The First Example

Let a = −1, b = 3/5, c = −2; then VF is spanned by:

[w1, w2] =

[
z +

10

3
,
15
(
z + 10

3

)
(13z − 10)

104(1− z)8/5(3z + 10)

]
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Figure 2: Rew2 (Left) and Imw2 (Right)
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Figure 3: Streamlines of w2 around 1 (see [1, p. 713] for definition of
streamline); Generators of the monodromy group

The Second Example

Let a = −3, b = 2, c = 4; then VF is spanned by:

[w1, w2] =

[
(z − 1)5

(
z + 1

2

)
z3

,
2(1− 3z)

(
z + 1

2

)
15z3(2z + 1)

]
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Figure 4: Re (Left) and Im (Right); w1 (Top) and w2 (Bottom)
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Figure 5: Streamlines of w1; Generators of the monodromy group

The Third Example

Let a = −1/3, b = 6, c = 2/3; then VF is spanned by:

[w1, w2] =

[
z1/3,

1

3645

(
3640 3
√
z log

(
z2/3 + 3

√
z + 1

)
− 10905z

z − 1
+

5445z

(z − 1)2
− 3105z

(z − 1)3
+

1701z

(z − 1)4

− 729z

(z − 1)5
− 7280 3

√
z log

(
1− 3
√
z
)
− 7280

√
3 3
√
z tan−1

(
2 3
√
z + 1√
3

)
− 10935

)]
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Figure 6: Rew2 (Top) and Imw2 (Bottom), around 1
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Figure 7: Streamlines of w2, wide-view (Left), around 1 (Right)
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Figure 8: Generators of the monodromy group, Jordan form

Applications
Discussion of Fuchs’s theorem in a real variable is given by
Boas [1, ch. 12.21]. She remarks, “our main interest in se-
ries solutions is not to solve differential equations this way
in general, but to study sets of functions. . . which are solu-
tions of differential equations that occur in applications.” In
the reals, Fuchs’s theorem identifies solutions y(x) for

d2y

dx2
− 2x

dy

dx
+ 2py = 0 (the Hermite diffeq),

x
d2y

dx2
+ (1− x)

dy

dx
+ py = 0 (the Laguerre diffeq).

Beyond the reals, a general knowledge of complex analy-
sis is useful to a student of physics. The following theorem
demonstrates [1, ch. 14.1].
Theorem. If f (z) = u + iv is analytic in a region, then u
and v satisfy Laplace’s equation in the region (that is, u and
v are harmonic functions). Moreover, any function u (or v)
satisfying Laplace’s equation in a simply-connected region
is the real or imaginary part of an analytic function f (z).

There are many systems in electrostatics, hydrodynam-
ics and thermodynamics which obey Laplace’s equation—
in fact, outside of sources or sinks all incompressible fluid
flows do. We have this result, almost by accident, through
Clairaut and d’Alembert [3, ch. 12.5].

Pedagogy
The monodromy group is a mathematical object which begs
for physical interpretation. Does it have any? Gauss’s law
for electric flux,

v
S E · da = qenc/ε0, is an example of

the relation between functional analysis and singular points
(given point charges). Unfortunately, Gauss’s law suffers
from the description of the electric field as a real vector func-
tion E : R3 → R3. This form is prohibitive to students who
wish to express the law as a complex function—especially
because the conjugation required to produce the complex
modulus is not an algebraic operation.

How might a mathematics-physics curriculum incorporate
complex analysis and physical applications? Well, atten-
tion could be given to each of the two subjects’ histori-
cal development. Early modern mathematicians such as the
Bernoullis, d’Alembert, Lagrange and Laplace were often
motivated by problems arising in mechanics [3, ch. 12-13].
Students may be able to stomach difficult mathematics in
pursuit of some physically meaningful conclusion.
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