The Motzkin Category

Jacob Karn and Dr. Jonathan Comes

Recently, Tom Halverson and Georgia Benkart introduced Motzkin diagrams in [1]. The following is a Motzkin diagram of type $7 \rightarrow 5$:

which is a morphism in $Hom_M(7,5)$. The Motzkin Category \mathcal{M} consists of diagrams where no more than two vertices are connected and no edges cross. Diagrams can be multiplied vertically as well as horizontally by the operations \bullet and \otimes respectively. Note that \mathcal{M} is closed under both operations. Below illustrates the operations on Motzkin diagrams:

Katch, Ly, and Posner gave a presentation of Motzkin monoids in terms of generators and relations in [2]. Our main result is a presentation of the Motzkin category using only three generators and five relations.

Normal Form in ${\boldsymbol{\mathcal{M}}}$

We desire to define a normal form for any Motzkin diagram $D: m + n \rightarrow 0$. Consider

$$D_i^{(k)} = \prod_{i=1}^{i-1} \prod_{j=1}^{k-i+1} \text{ and } B_i^{(k)} = \prod_{j=1}^{i-1} \prod_{j=1}^{k-i+1} \dots$$

Lemma 1

Any Motzkin Diagram $D: m + n \rightarrow 0$ can be written uniquely in the form:

$$D = (D_{i_1}^{(0)} \bullet D_{i_2}^{(2)} \bullet \cdots \bullet D_{i_k}^{(m+n-l-2)}) \bullet (B_{j_1}^{(m+n-l)} \bullet B_{j_2}^{(m+n-l+1)} \bullet \cdots \bullet B_{j_l}^{(m+n-1)})$$

where *l* is the number of parts with one element, $1 = i_1 < i_2 < \cdots < i_k$, and $j_1 < j_2 < \cdots < j_l$.

The normal form for the diagram above is $(D_1^{(0)} \bullet D_2^{(2)} \bullet D_5^{(4)}) \bullet (B_1^{(6)} \bullet B_4^{(7)})$.

The Category FM

In order to prove the theorem, we let \mathcal{FM} denote the strict monoidal category generated by a single object and three morphisms $b: 1 \to 0$, $c: 0 \to 2$, and $d: 2 \to 0$ subject to the relations:

 $(d \odot 1_{1}) \circ (1_{1} \odot c) = 1_{1} = (1_{1} \odot d) \circ (c \odot 1_{1})$ $(1_{1} \odot b) \circ c = (b \odot 1_{1}) \circ c \qquad d \circ c = 1_{0} = b \circ (b \odot 1_{1}) \circ c$ Consider defining $d_{i}^{(k)} = 1_{i-1} \odot d \odot 1_{k-i+1}, b_{i}^{(k)} = 1_{i-1} \odot b \odot 1_{k-i+1}, and$ $c_{i}^{(k)} = 1_{i-1} \odot c \odot 1_{k-i+1}.$ Morphisms in the category *FM* are combinations of $b_{i}^{(k)}, c_{i}^{(k)}$, and $d_{i}^{(k)}$. Essentially, given a morphism in $Hom_{FM}(m + n, 0)$ we need to be able to mold the morphism to a consistent form. We derive the following relations in order to obtain a normal form for our morphisms:

$$\begin{split} & d_i^{(k)} \circ c_i^{(k)} = 1_k \quad d_i^{(k)} \circ c_{i+1}^{(k)} = 1_{k+1} \quad d_i^{(k)} \circ c_{i-1}^{(k)} = 1_{k+1} \\ & d_i^{(k)} \circ c_j^{(k)} = c_{j-2}^{(k-2)} \circ d_i^{(k-2)} \quad d_i^{(k)} \circ c_j^{(k)} = c_j^{(k-2)} \circ d_{i-2}^{(k-2)} \\ & d_i^{(k)} \circ d_j^{(k+2)} = d_j^{(k)} \circ d_{i+2}^{(k+2)} \quad c_i^{(k)} \circ c_j^{(k-2)} = c_{j+2}^{(k)} \circ c_i^{(k-2)} \\ & b_i^{(k-1)} \circ b_j^{(k)} = b_{j-1}^{(k-1)} \circ b_i^{(k)} \quad b_i^{(k)} \circ d_j^{(k+1)} = d_j^{(k)} \circ b_{i+2}^{(k+2)} \\ & b_i^{(k)} \circ d_j^{(k+1)} = d_{i-1}^{(k)} \circ b_j^{(k+2)} \quad c_i^{(k)} \circ b_j^{(k)} = b_j^{(k+2)} \circ c_{i+1}^{(k+1)} \\ & c_i^{(k)} \circ b_j^{(k)} = b_{j+2}^{(k+2)} \circ c_i^{(k+1)} \end{split}$$

Lemma 2

Any morphism *d* in $Hom_{FM}(m + n, 0)$ can be written in the form: $d = (d_{i_1}^{(0)} \circ d_{i_2}^{(2)} \circ \cdots \circ d_{i_k}^{(m+n-l-2)}) \circ (b_{j_1}^{(m+n-l)} \circ b_{j_2}^{(m+n-l+1)} \circ \cdots \circ b_{j_l}^{(m+n-1)})$, where $1 = i_1 < i_2 < \cdots < i_k$, and $j_1 < j_2 < \cdots < j_l$.

For example, the morphism $d_1^{(0)} \circ d_2^{(2)} \circ b_1^{(4)} \circ d_3^{(5)} \circ c_4^{(5)}$ can be put into normal form using the relation $d_i^{(k)} \circ c_{i+1}^{(k)} = 1_k$.

Outline of Theorem's Proof

The defining relations of \mathcal{FM} hold among the corresponding diagrams of \mathcal{M} , so there is a strict monoidal functor $F: \mathcal{FM} \to \mathcal{M}$. To show that $\mathcal{FM} \cong \mathcal{M}$ we must show that F is a bijection.

Let $D: m + n \rightarrow 0$ and $D': m \rightarrow n$. We have defined a diagrammatic bijection ψ as follows:

Essentially, this bijection is simply a way to get a $m \to n$ diagram from a $m + n \to 0$ diagram and vice versa. Next, we describe an analog to the bijection ψ for the category *FM*. For morphisms $x:m + n \to 0$ and $y:m \to n$ in *FM* define the bijection ϕ as follows:

$$\phi(y) = \delta_n \circ (y \odot 1_n) \text{ and } \phi^{-1}(x) = (x \odot 1_n) \circ (1_m \odot \gamma_n) \text{ where}$$

$$\gamma_n = c_n^{(2n-2)} \circ \gamma_{n-1} \text{ and } \delta_n = \delta_{n-1} \circ d_n^{(2n-2)}.$$

Next, consider

The diagram above is commutative and so we only have to show *F* is a bijection on morphisms of type $m + n \rightarrow 0$. Observe $F(d_i^{(k)}) = D_i^{(k)}$ and $F(b_i^{(k)}) = B_i^{(k)}$. Since we determined that every Motzkin diagram can be written in the described normal form it follows that *F* is surjective. Moreover, because the normal form is unique, *F* is injective. Therefore, $\mathcal{FM} \cong \mathcal{M}$.

References

[1] Benkart, Halverson *Motzkin Algerbras* 2011
[2] Hatch, Ly, Posner *Presentation of the Motzkin Monoid* 2013
Acknowledgements

I owe all my sentiments and intrigue for this topic to Dr. Comes. Thank you for your commitment and patience.