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Recently, Tom Halverson and Georgia Benkart introduced Motzkin
diagrams in [1]. The following is a Motzkin diagram of type 7 → 5:

which is a morphism in 𝐻𝑜𝑚((7,5). The Motzkin Category M consists of 
diagrams where no more than two vertices are connected and no edges 
cross. Diagrams can be multiplied vertically as well as horizontally by the 
operations ● and ⨂ respectively. Note that M is closed under both 
operations. Below illustrates the operations on Motzkin diagrams: 

A =                                        B =                                      C =

A ● (B ⨂ C) =                       =  
Katch, Ly, and Posner gave a presentation of Motzkin monoids in terms of 
generators and relations in [2] . Our main result is a presentation of the 
Motzkin category using only three generators and five relations.

Normal Form in M
We desire to define a normal form for any Motzkin diagram 𝐷:𝑚 + 𝑛 → 0.
Consider
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐷1

(2)= and   𝐵1
(2) = .

For example consider the decomposition of the diagram below:

=

The normal form for the diagram above is (𝐷5
(6)●𝐷7

(7)●𝐷8
(9))●(𝐵5

(:)●𝐵9
(;)).

Theorem
As a strict monoidal category, M is generated by the morphisms

subject only to the relations

Outline of Theorem’s Proof
The defining relations of FM hold among the corresponding diagrams of  
M, so there is a strict monoidal functor 𝐹: FM ⟶ M. To show that         
FM ≅M we must show that 𝐹 is a bijection. 
Let 𝐷:𝑚 + 𝑛	   → 0 and 𝐷=:𝑚	   → 𝑛. We have defined a diagrammatic 
bijection 𝜓 as follows:

𝜓(𝐷) =	  	  	  	  	  	  	  	  	  	  	  	  	   𝜓?5 𝐷= =	  

Essentially, this bijection is simply a way to get a 𝑚 → 𝑛 diagram from a  
𝑚 +𝑛 → 0 diagram and vice versa. Next, we describe an analog to the 
bijection 𝜓 for the category FM. For morphisms 𝑥:𝑚 + 𝑛	   → 0 and 
𝑦:𝑚	   → 𝑛 in FM define the bijection𝜙 as follows:
𝜙 𝑦 = 𝛿D ∘ 𝑦⨀1D and 𝜙?5 𝑥 = (𝑥⨀1D)∘ (1H⨀𝛾D) where 
𝛾D = 𝑐D

(7D?7) ∘ 𝛾D?5 and 𝛿D = 𝛿D?5 ∘ 𝑑D
(7D?7) .	  

Next, consider
𝐻𝑜𝑚L( (𝑚,𝑛) 𝐻𝑜𝑚( (𝑚,𝑛)

	  	   	  	  	  	   	  	  	  	   	  	  	  𝐻𝑜𝑚L( (𝑚 +𝑛, 0) 𝐻𝑜𝑚( (𝑚 +𝑛, 0)
The diagram above is commutative and so we only have to show 𝐹 is a 
bijection on morphisms of type 𝑚+ 𝑛 → 0. Observe 𝐹 𝑑1

2 = 𝐷1
2 and 

𝐹 𝑏1
2 = 𝐵1

2 .	  Since we determined that every Motzkin diagram can be 
written  in the described normal form it follows that 𝐹 is surjective. 
Moreover, because the normal form is unique, 𝐹 is injective. Therefore, 
FM ≅M.
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The Category FM
In order to prove the theorem, we let FM denote the strict monoidal
category generated by a single object and three morphisms 𝑏:1 → 0,	  
𝑐: 0 → 2, and 𝑑:2 → 0	  subject to the relations: 

𝑑⨀15 ∘ 15⨀𝑐 = 15 = 15⨀𝑑 ∘ (𝑐⨀15)
15⨀𝑏 ∘ 𝑐 = 𝑏⨀15 ∘ 𝑐 𝑑 ∘ 𝑐 = 16 = 𝑏 ∘ 𝑏⨀15 ∘ 𝑐

Consider defining 𝑑1
(2) = 11?5⨀𝑑⨀12?1O5, 𝑏1

2 = 11?5⨀𝑏⨀12?1O5 , and 
𝑐1
(2) = 11?5⨀𝑐⨀12?1O5 . Morphisms in the category FM are combinations 

of 𝑏1
(2) , 𝑐1

(2) , and 𝑑1
(2) . Essentially, given a morphism in 𝐻𝑜𝑚L( 𝑚 + 𝑛,0

we need to be able to mold the morphism to a consistent form. We derive 
the following relations in order to obtain a normal form for our morphisms:

𝑑1
(2) ∘ 𝑐1

2 = 12	  	  	  	  	  	  	  	  𝑑1
2 ∘ 𝑐1O5

2 = 12O5	  	  	  	  	  	  	  	  𝑑1
(2) ∘ 𝑐1?5

2 = 12O5
𝑑1
(2) ∘ 𝑐P

2 = 𝑐P?7
2?7 ∘ 𝑑1

2?7 	  	  	  	  	  	  	  	  𝑑1
2 ∘ 𝑐P

2 = 𝑐P
2?7 ∘ 𝑑1?7

2?7

𝑑1
(2) ∘ 𝑑P

2O7 = 𝑑P
2 ∘ 𝑑1O7

2O7 	  	  	  	  	  	  	  	  𝑐1
2 ∘ 𝑐P

2?7 = 𝑐PO7
2 ∘ 𝑐1

2?7

𝑏1
(2?5)∘ 𝑏P

2 = 𝑏P?5
2?5 ∘ 𝑏1

2 	  	  	  	  	  	  	  	  𝑏1
2 ∘ 𝑑P

2O5 = 𝑑P
2 ∘ 𝑏1O7

2O7

𝑏1
(2) ∘ 𝑑P

2O5 = 𝑑1?5
2 ∘ 𝑏P

2O7 	  	  	  	  	  	  	  	  𝑐1
2 ∘ 𝑏P

2 = 𝑏P
2O7 ∘ 𝑐1O5

2O5

𝑐1
2 ∘ 𝑏P

2 = 𝑏PO7
2O7 ∘ 𝑐1

2O5

For example, the morphism 𝑑5
(6) ∘ 𝑑7

(7) ∘ 𝑏5
(9) ∘ 𝑑Q

(8) ∘ 𝑐9
(8) can be put into 

normal form using the relation 𝑑1
(2) ∘ 𝑐1O5

(2) = 12.

Lemma 1
Any Motzkin Diagram 𝐷:𝑚 + 𝑛 → 0 can be written uniquely  in the 
form:
𝐷 = (𝐷1R

(6)●𝐷1S
(7)● ⋯● 𝐷1U

(HOD?V?7))●(𝐵PR
(HOD?V)●𝐵PS

(HOD?VO5)● ⋯●𝐵PW
(HOD?5))

where 𝑙 is the number of parts with one element, 1 = 𝑖5 < 𝑖7 < ⋯ < 𝑖2 , 
and 𝑗5 < 𝑗7 < ⋯ < 𝑗V.

Lemma 2
Any morphism 𝑑 in 𝐻𝑜𝑚L( 𝑚 + 𝑛,0 can be written in the form:
𝑑 = 𝑑1R

6 ∘𝑑1S
7 ∘ ⋯∘𝑑1U

HOD?V?7 ∘ 𝑏PR
HOD?V ∘ 𝑏PS

HOD?VO5 ∘⋯∘ 𝑏PW
HOD?5 .

where 1 = 𝑖5 < 𝑖7 < ⋯ < 𝑖2 , and 𝑗5 < 𝑗7 < ⋯ < 𝑗V.

𝐹

𝐹

𝜓𝜙


